Advertisement

Molecular and Cellular Biochemistry

, Volume 450, Issue 1–2, pp 125–134 | Cite as

Knockdown of SUMO1P3 represses tumor growth and invasion and enhances radiosensitivity in hepatocellular carcinoma

  • Yan Zhou
  • Ping He
  • Xuhua Xie
  • Changyu SunEmail author
Article
  • 135 Downloads

Abstract

Hepatocellular carcinoma (HCC) is one of the most common types of malignant tumors with high recurrence and metastasis rates. Radiotherapy represents a major therapeutic option for HCC patients. However, the efficacy of radiotherapy has been limited due to the development of intrinsic radioresistance of the tumor cells. Small ubiquitin-like modifier 1 pseudogene 3 (SUMO1P3), one member of SUMO pseudogene family, is a novel identified lncRNA that was originally identified to be upregulated in gastric cancer. However, the detailed roles of SUMO1P3 in HCC development remain to be elucidated. Here, the expression of SUMO1P3 in HCC tissues and cells was examined by qRT-PCR. Cell proliferation, colony formation ability, invasion ability, apoptosis, and radiosensitivity were detected by MTT assay, colony formation assay, cell invasion assay, flow cytometry analysis, and survival fraction assay, respectively. We found that SUMO1P3 was significantly upregulated in HCC tissues and cells. Besides, SUMO1P3 was highly expressed in HCC patients with higher TNM stage. Furthermore, SUMO1P3 knockdown markedly suppressed cell proliferation, colony formation ability, and cell invasiveness, promoted apoptosis, and enhanced radiosensitivity of HCC cells. We concluded that the knockdown of SUMO1P3 repressed tumor growth, invasion, promoted apoptosis, and enhanced radiosensitivity in HCC, providing evidence that SUMO1P3 might be a potential novel biomarker and a therapeutic target for HCC.

Keywords

SUMO1P3 Proliferation Invasion Apoptosis Radiosensitivity HCC 

Abbreviations

HCC

Hepatocellular carcinoma

SUMO1P3

Small ubiquitin-like modifier 1 pseudogene 3

LncRNAs

Long non-coding RNAs

WHO

World Health Organization

TNM

Tumor-node-metastasis

DMEM

Dulbecco’s Modified Eagle’s Medium

FBS

Fetal bovine serum

qRT-PCR

Quantitative real-time polymerase chain reaction

cDNA

Complementary DNA

DMSO

Dimethyl sulfoxide

ANOVA

One-way analysis of variance

GAS5

LncRNA growth arrest-specific 5

CCAT1

LncRNA colon cancer-associated transcript-1

CRNDE

LncRNA colorectal neoplasia differentially expressed

HMGB1

High-mobility group box 1 protein

Notes

Compliance with ethical standards

Conflict of interest

The authors declare no competing or financial interests.

Ethical approval

This study was approved by the Ethics Committee of Zhengzhou University and written informed consent was obtained for the use of tissue samples from all participants enrolled in this study.

References

  1. 1.
    Ferlay J et al (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127(12):2893–2917CrossRefGoogle Scholar
  2. 2.
    El-Serag HB et al (2007) Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132(7):2557–2576CrossRefGoogle Scholar
  3. 3.
    Rampone B et al (2009) Current management strategy of hepatocellular carcinoma. World J Gastroenterol 15(26):3210–3216CrossRefGoogle Scholar
  4. 4.
    Seo YS et al (2010) Preliminary result of stereotactic body radiotherapy as a local salvage treatment for inoperable hepatocellular carcinoma. J Surg Oncol 102(3):209–214CrossRefGoogle Scholar
  5. 5.
    Yu JI et al (2014) Considerations for radiation therapy in hepatocellular carcinoma: the radiation oncologists’ perspective. Dig Dis 32(6):755–763CrossRefGoogle Scholar
  6. 6.
    Kalogeridi MA et al (2015) Role of radiotherapy in the management of hepatocellular carcinoma: a systematic review. World J Hepatol 7(1):101–112CrossRefGoogle Scholar
  7. 7.
    Toya R et al (2007) Conformal radiation therapy for portal vein tumor thrombosis of hepatocellular carcinoma. Radiother Oncol 84(3):266–271CrossRefGoogle Scholar
  8. 8.
    Rodemann HP (2009) Molecular radiation biology: perspectives for radiation oncology. Radiother Oncol 92(3):293–298CrossRefGoogle Scholar
  9. 9.
    Cun Y et al (2013) Silencing of APE1 enhances sensitivity of human hepatocellular carcinoma cells to radiotherapy in vitro and in a xenograft model. PLoS ONE 8(2):e55313CrossRefGoogle Scholar
  10. 10.
    Ursino S et al (2012) Radiotherapy and hepatocellular carcinoma: update and review of the literature. Eur Rev Med Pharmacol Sci 16(11):1599–1604Google Scholar
  11. 11.
    Li JK et al (2017) Long noncoding RNA MRCCAT1 promotes metastasis of clear cell renal cell carcinoma via inhibiting NPR3 and activating p38-MAPK signaling. Mol Cancer 16(1):111CrossRefGoogle Scholar
  12. 12.
    Guttman M et al (2012) Modular regulatory principles of large non-coding RNAs. Nature 482(7385):339–346CrossRefGoogle Scholar
  13. 13.
    Quan M et al (2015) Exploring the secrets of long noncoding RNAs. Int J Mol Sci 16(3):5467–5496CrossRefGoogle Scholar
  14. 14.
    Schmitt AM et al (2016) Long noncoding RNAs in cancer pathways. Cancer Cell 29(4):452–463CrossRefGoogle Scholar
  15. 15.
    Mercer TR et al (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10(3):155–159CrossRefGoogle Scholar
  16. 16.
    Yan X et al (2015) Comprehensive genomic characterization of long non-coding RNAs across human cancers. Cancer Cell 28(4):529–540CrossRefGoogle Scholar
  17. 17.
    Tan J et al (2015) Double-negative feedback loop between long non-coding RNA TUG1 and miR-145 promotes epithelial to mesenchymal transition and radioresistance in human bladder cancer cells. FEBS Lett 589(20 Pt B):3175–3181CrossRefGoogle Scholar
  18. 18.
    Lu Y et al (2016) The long non-coding RNA NEAT1 regulates epithelial to mesenchymal transition and radioresistance in through miR-204/ZEB1 axis in nasopharyngeal carcinoma. Tumour Biol 37(9):11733–11741CrossRefGoogle Scholar
  19. 19.
    Bettermann K et al (2012) SUMOylation in carcinogenesis. Cancer Lett 316(2):113–125CrossRefGoogle Scholar
  20. 20.
    Su HL et al (2002) Molecular features of human ubiquitin-like SUMO genes and their encoded proteins. Gene 296(1–2):65–73CrossRefGoogle Scholar
  21. 21.
    Pink RC et al. (2011) Pseudogenes: pseudo-functional or key regulators in health and disease? RNA 17(5): 792–798CrossRefGoogle Scholar
  22. 22.
    Li PF et al (2014) Non-coding RNAs and gastric cancer. World J Gastroenterol 20(18):5411–5419CrossRefGoogle Scholar
  23. 23.
    Mei D et al (2013) Up-regulation of SUMO1 pseudogene 3 (SUMO1P3) in gastric cancer and its clinical association. Med Oncol 30(4):709CrossRefGoogle Scholar
  24. 24.
    Zhan Y et al (2016) Increased expression of SUMO1P3 predicts poor prognosis and promotes tumor growth and metastasis in bladder cancer. Oncotarget 7(13):16038–16048CrossRefGoogle Scholar
  25. 25.
    Li D et al (2014) Minimally invasive local therapies for liver cancer. Cancer Biol Med 11(4):217–236Google Scholar
  26. 26.
    Liu YR et al (2015) Long noncoding RNAs in hepatocellular carcinoma: novel insights into their mechanism. World J Hepatol 7(28):2781–2791CrossRefGoogle Scholar
  27. 27.
    Chang L et al (2016) Decreased expression of long non-coding RNA GAS5 indicates a poor prognosis and promotes cell proliferation and invasion in hepatocellular carcinoma by regulating vimentin. Mol Med Rep 13(2):1541–1550CrossRefGoogle Scholar
  28. 28.
    Deng L et al (2015) Long noncoding RNA CCAT1 promotes hepatocellular carcinoma progression by functioning as let-7 sponge. J Exp Clin Cancer Res 34:18CrossRefGoogle Scholar
  29. 29.
    Chen Z et al (2016) LncRNA CRNDE promotes hepatic carcinoma cell proliferation, migration and invasion by suppressing miR-384. Am J Cancer Res 6(10):2299–2309Google Scholar
  30. 30.
    Hu X et al (2017) Downregulation of lncRNA ANRIL inhibits proliferation, induces apoptosis, and enhances radiosensitivity in nasopharyngeal carcinoma cells through regulating miR-125a. Cancer Biol Ther 18(5):331–338CrossRefGoogle Scholar
  31. 31.
    Jiang H et al (2017) Down-regulation of LncRNA TUG1 enhances radiosensitivity in bladder cancer via suppressing HMGB1 expression. Radiat Oncol 12(1):65CrossRefGoogle Scholar
  32. 32.
    Xue Y et al (2017) LncRNA GAS5 inhibits tumorigenesis and enhances radiosensitivity by suppressing miR-135b expression in non-small cell lung cancer. Oncol Res 25(8):1305CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou UniversityZhengzhouPeople’s Republic of China

Personalised recommendations