Molecular and Cellular Biochemistry

, Volume 450, Issue 1–2, pp 25–34 | Cite as

Ivabradine improved left ventricular function and pressure overload-induced cardiomyocyte apoptosis in a transverse aortic constriction mouse model

  • Yihui Yu
  • Zuoying Hu
  • Bing Li
  • Zhimei Wang
  • Shaoliang ChenEmail author


This study aimed to investigate the effects and molecular mechanisms of ivabradine in preventing cardiac hypertrophy in an established transverse aortic constriction (TAC) mouse model. A total of 56 male C57BL/6 mice were randomly assigned into the following seven groups (8 mice per group): sham, TAC model, Iva-10 (10 mg/kg/day ivabradine), Iva-20 (20 mg/kg/day ivabradine), Iva-40 (40 mg/kg/day ivabradine), Iva-80 (80 mg/kg/day ivabradine), and Rap (rapamycin, a positive control). Echocardiography and left ventricular hemodynamics were performed. Hematoxylin-eosin (H&E), Masson’s trichome staining, and TUNEL assays were conducted to evaluate cardiac hypertrophy, fibrosis, and apoptosis, respectively. Western blotting was performed to detect the expression of proteins related to the PI3K/Akt/mTOR/p70S6K pathway. Ivabradine could effectively improve left ventricular dysfunction and hypertrophy induced by TAC in a dose-independent manner. Moreover, no obvious change in heart rate (HR) was observed in the TAC and Rap groups, whereas a significant decrease in HR was found after ivabradine treatment (P < 0.05). Cardiac hypertrophy, fibrosis, and apoptosis induced by TAC were notably suppressed after either rapamycin or ivabradine treatment (P < 0.05). Ivabradine and rapamycin also decreased the expression of PI3K/Akt and mTOR induced by TAC. Ivabradine improved cardiac hypertrophy and fibrosis as well as reduced cardiomyocyte apoptosis via the PI3K/Akt/mTOR/p70S6K pathway in TAC model mice.


Ivabradine Transverse aortic constriction Cardiac hypertrophy Apoptosis PI3K/Akt/mTOR pathway 


Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interests to state.


  1. 1.
    Persoon-Rothert M, van der Wees KG, van der Laarse A (2002) Mechanical overload-induced apoptosis: a study in cultured neonatal ventricular myocytes and fibroblasts. Mol Cell Biochem 241(1–2):115–124CrossRefGoogle Scholar
  2. 2.
    Oka T, Akazawa H, Naito AT, Komuro I (2014) Angiogenesis and cardiac hypertrophy maintenance of cardiac function and causative roles in heart failure. Circ Res 114(3):565–571CrossRefGoogle Scholar
  3. 3.
    Mitra A, Basak T, Datta K, Naskar S, Sengupta S, Sarkar S (2013) Role of α-crystallin B as a regulatory switch in modulating cardiomyocyte apoptosis by mitochondria or endoplasmic reticulum during cardiac hypertrophy and myocardial infarction. Cell Death Dis 4(4):e582CrossRefGoogle Scholar
  4. 4.
    Manabe I, Shindo T, Nagai R (2002) Gene expression in fibroblasts and fibrosis involvement in cardiac hypertrophy. Circ Res 91(12):1103–1113CrossRefGoogle Scholar
  5. 5.
    Ha T, Hua F, Li Y, Ma J, Gao X, Kelley J, Zhao A, Haddad GE, Williams DL, Browder IW (2006) Blockade of MyD88 attenuates cardiac hypertrophy and decreases cardiac myocyte apoptosis in pressure overload-induced cardiac hypertrophy in vivo. Am J Physiol Heart Circ Physiol 290(3):H985-H994CrossRefGoogle Scholar
  6. 6.
    Hayata N, Fujio Y, Yamamoto Y, Iwakura T, Obana M, Takai M, Mohri T, Nonen S, Maeda M, Azuma J (2008) Connective tissue growth factor induces cardiac hypertrophy through Akt signaling. Biochem Biophys Res Commun 370(2):274–278CrossRefGoogle Scholar
  7. 7.
    Hua Y, Zhang Y, Ceylan-Isik AF, Wold LE, Nunn JM, Ren J (2011) Chronic Akt activation accentuates aging-induced cardiac hypertrophy and myocardial contractile dysfunction: role of autophagy. Basic Res Cardiol 106(6):1173–1191CrossRefGoogle Scholar
  8. 8.
    Kemi OJ, Ceci M, Wisloff U, Grimaldi S, Gallo P, Smith GL, Condorelli G, Ellingsen O (2008) Activation or inactivation of cardiac Akt/mTOR signaling diverges physiological from pathological hypertrophy. J Cell Physiol 214(2):316–321CrossRefGoogle Scholar
  9. 9.
    Kuzman JA, O’Connell TD, Gerdes AM (2007) Rapamycin prevents thyroid hormone-induced cardiac hypertrophy. Endocrinology 148(7):3477–3484CrossRefGoogle Scholar
  10. 10.
    Siedlecki AM, Jin X, Muslin AJ (2009) Uremic cardiac hypertrophy is reversed by rapamycin but not by lowering of blood pressure. Kidney Int 75(8):800–808CrossRefGoogle Scholar
  11. 11.
    Asrani SK, Leise MD, West CP, Murad MH, Pedersen RA, Erwin PJ, Tian J, Wiesner RH, Kim W (2010) Use of sirolimus in liver transplant recipients with renal insufficiency: a systematic review and meta-analysis. Hepatology 52(4):1360–1370CrossRefGoogle Scholar
  12. 12.
    Ryan EA, Paty BW, Senior PA, Shapiro AJ (2004) Risks and side effects of islet transplantation. Curr Diabetes Rep 4(4):304–309CrossRefGoogle Scholar
  13. 13.
    Cammarano C, Silva M, Comee M, Donovan JL, Malloy MJ (2016) meta-analysis of ivabradine in patients with stable coronary artery disease with and without left ventricular dysfunction. Clin Ther. Google Scholar
  14. 14.
    Treptau J, Jeske O, Napp C, Menon A, Schieffer B, Schaefer A, Bauersachs J, Tongers J (2015) Ivabradine in acute heart failure: a therapeutic means for effective heart rate control. Circulation 132(Suppl 3):A18267-A18267Google Scholar
  15. 15.
    Tardif J-C, Ford I, Tendera M, Bourassa MG, Fox K (2005) Efficacy of ivabradine, a new selective I f inhibitor, compared with atenolol in patients with chronic stable angina. Eur Heart J 26(23):2529–2536CrossRefGoogle Scholar
  16. 16.
    Borer JS, Fox K, Jaillon P, Lerebours G (2003) Antianginal and antiischemic effects of ivabradine, an I f inhibitor, in stable angina A randomized, double-blind, multicentered, placebo-controlled trial. Circulation 107(6):817–823CrossRefGoogle Scholar
  17. 17.
    Fox K, Ford I, Steg PG, Tardif J-C, Tendera M, Ferrari R (2014) Ivabradine in stable coronary artery disease without clinical heart failure. N Engl J Med 371(12):1091–1099CrossRefGoogle Scholar
  18. 18.
    Walcher T, Bernhardt P, Vasic D, Bach H, Durst R, Rottbauer W, Walcher D (2010) Ivabradine reduces chemokine-induced CD4-positive lymphocyte migration. Mediat Inflamm 2010:
  19. 19.
    Custodis F, Baumhakel M, Schlimmer N, List F, Gensch C, Bohm M, Laufs U (2008) Heart rate reduction by ivabradine reduces oxidative stress, improves endothelial function, and prevents atherosclerosis in apolipoprotein E-deficient mice. Circulation 117(18):2377–2387. CrossRefGoogle Scholar
  20. 20.
    Songstad NT, Johansen D, How O-J, Kaaresen PI, Ytrehus K, Acharya G (2014) Effect of transverse aortic constriction on cardiac structure, function and gene expression in pregnant rats. PLoS ONE 9(2):e89559CrossRefGoogle Scholar
  21. 21.
    Custodis F, Fries P, Müller A, Stamm C, Grube M, Kroemer HK, Böhm M, Laufs U (2012) Heart rate reduction by ivabradine improves aortic compliance in apolipoprotein E-deficient mice. J Vasc Res 49(5):432–440CrossRefGoogle Scholar
  22. 22.
    Busseuil D, Shi Y, Mecteau M, Brand G, Gillis M-A, Thorin E, Asselin C, Roméo P, Leung TK, Latour J-G (2011) Heart rate reduction by ivabradine reduces diastolic dysfunction and cardiac fibrosis. Cardiology 117(3):234–242CrossRefGoogle Scholar
  23. 23.
    Oshiro N, Yoshino K, Hidayat S, Tokunaga C, Hara K, Eguchi S, Avruch J, Yonezawa K (2004) Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes Cells 9(4):359–366CrossRefGoogle Scholar
  24. 24.
    Wang G, Zhang L, Manyande A, Cao M, He W, Wu X, Wang J, Zhang C (2015) Effects of anesthesia on conventional and speckle tracking echocardiographic parameters in a mouse model of pressure overload. Exp Ther Med 9(5):1679–1687CrossRefGoogle Scholar
  25. 25.
    Bucchi A, Tognati A, Milanesi R, Baruscotti M, DiFrancesco D (2006) Properties of ivabradine-induced block of HCN1 and HCN4 pacemaker channels. J Physiol 572(2):335–346CrossRefGoogle Scholar
  26. 26.
    Nakamura A, Rokosh DG, Paccanaro M, Yee RR, Simpson PC, Grossman W, Foster E (2001) LV systolic performance improves with development of hypertrophy after transverse aortic constriction in mice. Am J Physiol Heart Circ Physiol 281(3):H1104-H1112CrossRefGoogle Scholar
  27. 27.
    Liao Y, Ishikura F, Beppu S, Asakura M, Takashima S, Asanuma H, Sanada S, Kim J, Ogita H, Kuzuya T (2002) Echocardiographic assessment of LV hypertrophy and function in aortic-banded mice: necropsy validation. Am J Physiol Heart Circ Physiol 282(5):H1703-H1708CrossRefGoogle Scholar
  28. 28.
    Custodis F, Baumhäkel M, Schlimmer N, List F, Gensch C, Böhm M, Laufs U (2008) Heart rate reduction by ivabradine reduces oxidative stress, improves endothelial function, and prevents atherosclerosis in apolipoprotein E–deficient mice. Circulation 117(18):2377–2387CrossRefGoogle Scholar
  29. 29.
    DiFrancesco D, Camm JA (2004) Heart rate lowering by specific and selective I f current inhibition with ivabradine. Drugs 64(16):1757–1765CrossRefGoogle Scholar
  30. 30.
    Mulder P, Barbier S, Chagraoui A, Richard V, Henry JP, Lallemand F, Renet S, Lerebours G, Mahlberg-Gaudin F, Thuillez C (2004) Long-term heart rate reduction induced by the selective If current inhibitor ivabradine improves left ventricular function and intrinsic myocardial structure in congestive heart failure. Circulation 109(13):1674–1679CrossRefGoogle Scholar
  31. 31.
    Busseuil D, Shi Y, Mecteau M, Brand G, Gillis M-A, Thorin E, Asselin C, Roméo P, Leung TK, Latour J-G (2010) Heart rate reduction by ivabradine reduces diastolic dysfunction and cardiac fibrosis. Cardiology 117(3):234–242CrossRefGoogle Scholar
  32. 32.
    Doesch AO, Ammon K, Konstandin M, Celik S, Kristen A, Frankenstein L, Buss S, Hardt S, Sack F-U, Katus HA (2009) Heart rate reduction for 12 months with ivabradine reduces left ventricular mass in cardiac allograft recipients. Transplantation 88(6):835–841CrossRefGoogle Scholar
  33. 33.
    Doesch AO, Mueller S, Erbel C, Gleissner CA, Frankenstein L, Hardt S, Ruhparwar A, Ehlermann P, Dengler T, Katus HA (2013) Heart rate reduction for 36 months with ivabradine reduces left ventricular mass in cardiac allograft recipients: a long-term follow-up study. Drug Des Dev Ther 7:1323CrossRefGoogle Scholar
  34. 34.
    Ye L, Varamini B, Lamming DW, Sabatini DM, Baur JA (2012) Rapamycin has a biphasic effect on insulin sensitivity in C2C12 myotubes due to sequential disruption of mTORC1 and mTORC2. Front Genet 3:177–187CrossRefGoogle Scholar
  35. 35.
    Martelli AM, Evangelisti C, Chiarini F, Grimaldi C, Manzoli L, McCubrey JA (2009) Targeting the PI3K/AKT/mTOR signaling network in acute myelogenous leukemia. Expert Opin Investig Drugs 18(9):1333–1349CrossRefGoogle Scholar
  36. 36.
    Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101CrossRefGoogle Scholar
  37. 37.
    Ghayad SE, Cohen PA (2010) Inhibitors of the PI3K/Akt/mTOR pathway: new hope for breast cancer patients. Recent Pat Anti-cancer Drug Dis 5(1):29–57CrossRefGoogle Scholar
  38. 38.
    Mora A, Davies AM, Bertrand L, Sharif I, Budas GR, Jovanović S, Mouton V, Kahn CR, Lucocq JM, Gray GA (2003) Deficiency of PDK1 in cardiac muscle results in heart failure and increased sensitivity to hypoxia. EMBO J 22(18):4666–4676CrossRefGoogle Scholar
  39. 39.
    Di R-m, Feng Q-t, Chang Z, Luan Q, Zhang Y-y, Huang J, Li X-L, Yang Z-Z (2010) PDK1 plays a critical role in regulating cardiac function in mice and human. Chin Med J 123(17):2358–2363Google Scholar
  40. 40.
    Canedo CS, Demeulder B, Ginion A, Bayascas JR, Balligand J-L, Alessi DR, Vanoverschelde J-L, Beauloye C, Hue L, Bertrand L (2010) Activation of the cardiac mTOR/p70S6K pathway by leucine requires PDK1 and correlates with PRAS40 phosphorylation. Am J Physiol-Endocrinol Metab 298(4):E761-E769Google Scholar
  41. 41.
    Calamaras TD, Lee C, Lan F, Ido Y, Siwik DA, Colucci WS (2015) The lipid peroxidation product 4-hydroxy-trans-2-nonenal causes protein synthesis in cardiac myocytes via activated mTORC1–p70S6K–RPS6 signaling. Free Radic Biol Med 82:137–146CrossRefGoogle Scholar
  42. 42.
    Yu S-Y, Liu L, Li P, Li J (2013) Rapamycin inhibits the mTOR/p70S6K pathway and attenuates cardiac fibrosis in adriamycin-induced dilated cardiomyopathy. Thorac Cardiovasc Surg 61(3):223–228Google Scholar
  43. 43.
    Diwan A, Wansapura J, Syed FM, Matkovich SJ, Lorenz JN, Dorn GW (2008) Nix-mediated apoptosis links myocardial fibrosis, cardiac remodeling, and hypertrophy decompensation. Circulation 117(3):396–404CrossRefGoogle Scholar
  44. 44.
    Izumiya Y, Kim S, Izumi Y, Yoshida K, Yoshiyama M, Matsuzawa A, Ichijo H, Iwao H (2003) Apoptosis signal-regulating kinase 1 plays a pivotal role in angiotensin II–induced cardiac hypertrophy and remodeling. Circ Res 93(9):874–883CrossRefGoogle Scholar
  45. 45.
    Ling H, Zhang T, Pereira L, Means CK, Cheng H, Gu Y, Dalton ND, Peterson KL, Chen J, Bers D (2009) Requirement for Ca 2+/calmodulin–dependent kinase II in the transition from pressure overload–induced cardiac hypertrophy to heart failure in mice. J Clin Investig 119(5):1230–1240CrossRefGoogle Scholar
  46. 46.
    Maejima Y, Usui S, Zhai P, Takamura M, Kaneko S, Zablocki D, Yokota M, Isobe M, Sadoshima J (2014) Muscle-specific RING finger 1 negatively regulates pathological cardiac hypertrophy through downregulation of calcineurin A. Circulation 7(3):479–490Google Scholar
  47. 47.
    Zhang D, Gaussin V, Taffet GE, Belaguli NS, Yamada M, Schwartz RJ, Michael LH, Overbeek PA, Schneider MD (2000) TAK1 is activated in the myocardium after pressure overload and is sufficient to provoke heart failure in transgenic mice. Nat Med 6(5):556–563. CrossRefGoogle Scholar
  48. 48.
    Kitamura Y, Koide M, Akakabe Y, Matsuo K, Shimoda Y, Soma Y, Ogata T, Ueyama T, Matoba S, Yamada H, Ikeda K (2014) Manipulation of cardiac phosphatidylinositol 3-kinase (PI3K)/Akt signaling by apoptosis regulator through modulating IAP expression (ARIA) regulates cardiomyocyte death during doxorubicin-induced cardiomyopathy. J Biol Chem 289(5):2788–2800. CrossRefGoogle Scholar
  49. 49.
    Tang C, Lu Y-H, Xie J-H, Wang F, Zou J-N, Yang J-S, Xing Y-Y, Xi T (2009) Downregulation of survivin and activation of caspase-3 through the PI3K/Akt pathway in ursolic acid-induced HepG2 cell apoptosis. Anti-cancer Drugs 20(4):249–258CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yihui Yu
    • 1
  • Zuoying Hu
    • 1
  • Bing Li
    • 1
  • Zhimei Wang
    • 1
  • Shaoliang Chen
    • 1
    Email author
  1. 1.Division of Cardiovascular Medicine, Department of Medicine, Nanjing First HospitalNanjing Medical UniversityNanjingChina

Personalised recommendations