Advertisement

Molecular and Cellular Biochemistry

, Volume 446, Issue 1–2, pp 1–9 | Cite as

RBX1-mediated ubiquitination of SESN2 promotes cell death upon prolonged mitochondrial damage in SH-SY5Y neuroblastoma cells

  • Ashish Kumar
  • Chandrima ShahaEmail author
Article

Abstract

Sestrins are evolutionary conserved stress-inducible genes which regulate the axis of cell survival and cell death. Suppression of Sestrin 2 (SESN2) has been linked with increase in oxidative stress and cell death but mechanistic details related to regulation of SESN2 during mitochondrial damage remain unknown. Our study shows that prolonged CCCP-induced mitochondrial damage decreases SESN2 levels and viability of SH-SY5Y cells while overexpression of SESN2 significantly rescues the viability of cells. Further, we demonstrate that Ring box protein 1 (RBX1) is a novel interactive partner and E3 ligase for SESN2 which mediates its K-48-linked ubiquitination upon extensive mitochondrial damage. Downregulation of RBX1 causes stabilization in levels of SESN2. Notably, silencing of RBX1 expression substantially declines cell death and generation of mitochondrial ROS in response to prolonged mitochondrial damage. Taken together, we suggest that SESN2 is critical to protect cells against detrimental effect of mitochondrial damage and RBX1 is a negative regulator of SESN2 which hampers its stabilization.

Keywords

SESN2 RBX1 Cell death Ubiquitination 

Abbreviations

SESN2

Sestrin2

CCCP

Carbonyl cyanide m-chlorophenylhydrazone

RBX1

Ring box protein 1

AMPK

AMP kinase

AD

Alzheimer’s disease

PD

Parkinson’s disease

Notes

Acknowledgements

We acknowledge technical assistance from Mr. G.S. Neelaram. This work was supported by grants from the Department of Biotechnology, New Delhi, India (http://dbtindia.nic.in/index.asp), to the National Institute of Immunology (Grant No. BT/03/033/88); Centre for Molecular Medicine, New Delhi (Grant No. BT/PR/14549/MED/14/1291).

Author contributions

AK and CS formed the general framework of this study. AK and CS designed experiments. AK performed all experiments. AK and CS prepared the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11010_2017_3267_MOESM1_ESM.pdf (501 kb)
Supplementary material 1 (PDF 500 KB)

References

  1. 1.
    Kourtis N, Tavernarakis N (2011) Cellular stress response pathways and ageing: intricate molecular relationships. The EMBO J 30(13):2520–2531.  https://doi.org/10.1038/emboj.2011.162 CrossRefPubMedGoogle Scholar
  2. 2.
    Cheng Z, Ristow M (2013) Mitochondria and metabolic homeostasis. Antioxid Redox Signal 19(3):240–242.  https://doi.org/10.1089/ars.2013.5255 CrossRefPubMedGoogle Scholar
  3. 3.
    Murphy E, Steenbergen C (2007) Preconditioning: the mitochondrial connection. Annu Rev Physiol 69:51–67.  https://doi.org/10.1146/annurev.physiol.69.031905.163645 CrossRefPubMedGoogle Scholar
  4. 4.
    Qureshi MA, Haynes CM, Pellegrino MW (2017) The mitochondrial unfolded protein response: signaling from the powerhouse. J Biol Chem 292(33):13500–13506.  https://doi.org/10.1074/jbc.R117.791061 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zhao Q, Wang J, Levichkin IV, Stasinopoulos S, Ryan MT, Hoogenraad NJ (2002) A mitochondrial specific stress response in mammalian cells. EMBO J 21(17):4411–4419CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mehler MF (2017) Shining a light on early stress responses and late-onset disease vulnerability. Proc Natl Acad Sci USA 114(9):2109–2111.  https://doi.org/10.1073/pnas.1700323114 CrossRefPubMedGoogle Scholar
  7. 7.
    Tait SW, Green DR (2013) Mitochondrial regulation of cell death. Cold Spring Harbor Perspect Biol.  https://doi.org/10.1101/cshperspect.a008706
  8. 8.
    Lim ML, Minamikawa T, Nagley P (2001) The protonophore CCCP induces mitochondrial permeability transition without cytochrome c release in human osteosarcoma cells. FEBS Lett 503(1):69–74CrossRefPubMedGoogle Scholar
  9. 9.
    Carroll RG, Hollville E, Martin SJ (2014) Parkin sensitizes toward apoptosis induced by mitochondrial depolarization through promoting degradation of Mcl-1. Cell Rep 9(4):1538–1553.  https://doi.org/10.1016/j.celrep.2014.10.046 CrossRefPubMedGoogle Scholar
  10. 10.
    Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8(9):741–752.  https://doi.org/10.1038/nrm2239 CrossRefPubMedGoogle Scholar
  11. 11.
    Winklhofer KF, Haass C (2010) Mitochondrial dysfunction in Parkinson’s disease. Biochim Biophys Acta 1802(1):29–44.  https://doi.org/10.1016/j.bbadis.2009.08.013 CrossRefPubMedGoogle Scholar
  12. 12.
    Osellame LD, Duchen MR (2013) Defective quality control mechanisms and accumulation of damaged mitochondria link Gaucher and Parkinson diseases. Autophagy 9(10):1633–1635.  https://doi.org/10.4161/auto.25878 CrossRefPubMedGoogle Scholar
  13. 13.
    Moreira PI, Carvalho C, Zhu X, Smith MA, Perry G (2010) Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim Biophys Acta 1802(1):2–10.  https://doi.org/10.1016/j.bbadis.2009.10.006 CrossRefPubMedGoogle Scholar
  14. 14.
    Lee JH, Budanov AV, Karin M (2013) Sestrins orchestrate cellular metabolism to attenuate aging. Cell Metab 18(6):792–801.  https://doi.org/10.1016/j.cmet.2013.08.018 CrossRefPubMedGoogle Scholar
  15. 15.
    Budanov AV, Lee JH, Karin M (2010) Stressin’ Sestrins take an aging fight. EMBO Mol Med 2(10):388–400.  https://doi.org/10.1002/emmm.201000097 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lee JH, Budanov AV, Park EJ, Birse R, Kim TE, Perkins GA, Ocorr K, Ellisman MH, Bodmer R, Bier E, Karin M (2010) Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies. Science 327(5970):1223–1228.  https://doi.org/10.1126/science.1182228 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Saveljeva S, Cleary P, Mnich K, Ayo A, Pakos-Zebrucka K, Patterson JB, Logue SE, Samali A (2016) Endoplasmic reticulum stress-mediated induction of SESTRIN 2 potentiates cell survival. Oncotarget 7(11):12254–12266.  https://doi.org/10.18632/oncotarget.7601 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Byun JK, Choi YK, Kim JH, Jeong JY, Jeon HJ, Kim MK, Hwang I, Lee SY, Lee YM, Lee IK, Park KG (2017) A positive feedback loop between Sestrin2 and mTORC2 is required for the survival of glutamine-depleted lung cancer cells. Cell Rep 20(3):586–599.  https://doi.org/10.1016/j.celrep.2017.06.066 CrossRefPubMedGoogle Scholar
  19. 19.
    Budanov AV, Karin M (2008) p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134(3):451–460.  https://doi.org/10.1016/j.cell.2008.06.028 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kim MG, Yang JH, Kim KM, Jang CH, Jung JY, Cho IJ, Shin SM, Ki SH (2015) Regulation of toll-like receptor-mediated Sestrin2 induction by AP-1, Nrf2, and the ubiquitin-proteasome system in macrophages. Toxicol Sci 144(2):425–435.  https://doi.org/10.1093/toxsci/kfv012 CrossRefPubMedGoogle Scholar
  21. 21.
    Chai D, Wang G, Zhou Z, Yang H, Yu Z (2015) Insulin increases sestrin 2 content by reducing its degradation through the PI 3 K/mTOR signaling pathway. Int J Endocrinol 2015:505849.  https://doi.org/10.1155/2015/505849 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bae SH, Sung SH, Oh SY, Lim JM, Lee SK, Park YN, Lee HE, Kang D, Rhee SG (2013) Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage. Cell Metab 17(1):73–84.  https://doi.org/10.1016/j.cmet.2012.12.002 CrossRefPubMedGoogle Scholar
  23. 23.
    Yang D, Li L, Liu H, Wu L, Luo Z, Li H, Zheng S, Gao H, Chu Y, Sun Y, Liu J, Jia L (2013) Induction of autophagy and senescence by knockdown of ROC1 E3 ubiquitin ligase to suppress the growth of liver cancer cells. Cell Death Differ 20(2):235–247.  https://doi.org/10.1038/cdd.2012.113 CrossRefPubMedGoogle Scholar
  24. 24.
    Yang D, Zhao Y, Liu J, Sun Y, Jia L (2012) Protective autophagy induced by RBX1/ROC1 knockdown or CRL inactivation via modulating the DEPTOR-MTOR axis. Autophagy 8(12):1856–1858.  https://doi.org/10.4161/auto.22024 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Park HW, Park H, Ro SH, Jang I, Semple IA, Kim DN, Kim M, Nam M, Zhang D, Yin L, Lee JH (2014) Hepatoprotective role of Sestrin2 against chronic ER stress. Nat Commun 5:4233.  https://doi.org/10.1038/ncomms5233 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Tripathi R, Ash D, Shaha C (2014) Beclin-1-p53 interaction is crucial for cell fate determination in embryonal carcinoma cells. J Cell Mol Med 18(11):2275–2286.  https://doi.org/10.1111/jcmm.12386 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Aich A, Shaha C (2013) Novel role of calmodulin in regulating protein transport to mitochondria in a unicellular eukaryote. Mol Cell Biol 33(22):4579–4593.  https://doi.org/10.1128/MCB.00829-13 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Erpapazoglou Z, Walker O, Haguenauer-Tsapis R (2014) Versatile roles of k63-linked ubiquitin chains in trafficking. Cells 3(4):1027–1088.  https://doi.org/10.3390/cells3041027 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Yau R, Rape M (2016) The increasing complexity of the ubiquitin code. Nat Cell Biol 18(6):579–586.  https://doi.org/10.1038/ncb3358 CrossRefPubMedGoogle Scholar
  30. 30.
    Shortt J, Johnstone RW (2012) Oncogenes in cell survival and cell death. Cold Spring Harbor Perspect Biol.  https://doi.org/10.1101/cshperspect.a009829
  31. 31.
    Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795.  https://doi.org/10.1038/nature05292 CrossRefPubMedGoogle Scholar
  32. 32.
    Zhou D, Zhan C, Zhong Q, Li S (2013) Upregulation of sestrin-2 expression via P53 protects against 1-methyl-4-phenylpyridinium (MPP+) neurotoxicity. J Mol Neurosci 51(3):967–975.  https://doi.org/10.1007/s12031-013-0081-x CrossRefPubMedGoogle Scholar
  33. 33.
    Murphy MP, LeVine H 3rd (2010) Alzheimer’s disease and the amyloid-beta peptide. J Alzheimer’s Dis 19(1):311–323.  https://doi.org/10.3233/JAD-2010-1221 CrossRefGoogle Scholar
  34. 34.
    Chen YS, Chen SD, Wu CL, Huang SS, Yang DI (2014) Induction of sestrin2 as an endogenous protective mechanism against amyloid beta-peptide neurotoxicity in primary cortical culture. Exp Neurol 253:63–71.  https://doi.org/10.1016/j.expneurol.2013.12.009 CrossRefPubMedGoogle Scholar
  35. 35.
    Seo K, Ki SH, Shin SM (2015) Sestrin2-AMPK activation protects mitochondrial function against glucose deprivation-induced cytotoxicity. Cell Signal 27(7):1533–1543.  https://doi.org/10.1016/j.cellsig.2015.03.003 CrossRefPubMedGoogle Scholar
  36. 36.
    Ding B, Parmigiani A, Divakaruni AS, Archer K, Murphy AN, Budanov AV (2016) Sestrin2 is induced by glucose starvation via the unfolded protein response and protects cells from non-canonical necroptotic cell death. Sci Rep 6:22538.  https://doi.org/10.1038/srep22538 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Cell Death and Differentiation Research LaboratoryNational Institute of ImmunologyNew DelhiIndia

Personalised recommendations