Molecular and Cellular Biochemistry

, Volume 442, Issue 1–2, pp 111–127 | Cite as

Comprehensive bioinformation analysis of the miRNA of PLCE1 knockdown in esophageal squamous cell carcinoma

  • Xiaobin Cui
  • Kaige Wang
  • Xinqian Yang
  • Hao Peng
  • Xi Chen
  • Huahua Xin
  • Yanxia Tian
  • Yunzhao Chen
  • Feng Li
Article
  • 154 Downloads

Abstract

Phospholipase C epsilon 1 (PLCE1) has been recognized as a novel susceptibility marker for esophageal squamous cell carcinoma (ESCC). The purpose of our study is to investigate its effect on the regulation of miRNA expression so as to translating the data into a novel strategy in control of ESCC. In this study, PLCE1 siRNA and vector-only plasmid were stably transfected into Eca109 and EC9706 cells and then subjected to miRNA array analysis, and quantitative real-time PCR was applied to validate miRNA array data. Then bioinformatic analyses, such as GO and pathway software, were conducted to obtain data on these differentially expressed miRNAs-targeted genes (DEGs) and clarify their function and pathway. The results showed that 36 miRNAs were found to be differentially expressed in PLCE1 siRNA-transfected cells compared with the control cells. In particular, 28 miRNAs were upregulated while 8 miRNAs were downregulated. Gene Ontology analysis showed that the function of the DEGs included cell cycle arrest, cell–matrix adhesion, apoptosis, etc. After this, the major pathways associated with the DEGs were regulation of actin cytoskeleton, TGF-beta signaling pathway, Notch signaling pathway and so on. Taken together, these results showed that the knockdown of PLCE1 may play a vital role in the control of ESCC. Further investigation will reveal and verify the function and pathway of the DEGs for the development of novel treatment strategy for the better control of ESCC.

Keywords

Esophageal squamous cell carcinoma PLCE1 gene miRNA array analysis Bioinformatics analysis 

Notes

Acknowledgements

This work was supported by Grants from the National Natural Science Foundation of China (Nos. 81560399, 81773116, 81360358, 81460362, 81760436), the Major science and technology projects of Shihezi University (No. gxjs2014 zdgg06), the Applied Basic Research Projects of Xinjiang Production and Construction Corps (No. 2016AG020), the high level talent project of Shihezi University (No. RCZX201533), and the Foundation for Distinguished Young Scholars of Shihezi University (No. 2015ZRKXJQ02).

Compliance with ethical standards

Conflict of interest

All authors declared that they have no conflict of interest.

Supplementary material

11010_2017_3197_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 22 kb)
11010_2017_3197_MOESM2_ESM.pptx (99.1 mb)
Supplementary material 2 (PPTX 101503 kb)
11010_2017_3197_MOESM3_ESM.pptx (11.5 mb)
Supplementary material 3 (PPTX 11802 kb)
11010_2017_3197_MOESM4_ESM.pptx (71 kb)
Supplementary material 4 (PPTX 70 kb)
11010_2017_3197_MOESM5_ESM.tif (55.3 mb)
Fig. S4 The graphical output of enriched GO terms in the cellular function. Boxes represent GO terms, labeled by its GO ID. The degree ofcolor saturation of each box was positively associated with the enrichment significance of the corresponding GO term. Insignificant GO terms withinthe hierarchical tree were shown as white boxes. Arrows showed correlations between different GO terms. Black solid arrows revealed relationships between two enriched GO terms. Black dashed arrows revealed relationships between enriched or unenriched and unenriched GO terms. a GO terms based on biological processes (TIF 56657 kb)
11010_2017_3197_MOESM6_ESM.tif (12.2 mb)
b GO terms based on cellular component (TIF 12462 kb)
11010_2017_3197_MOESM7_ESM.tif (12.4 mb)
c GO terms based on molecular functions. The more statistically significant it was, the darker the color was (TIF 12658 kb)

References

  1. 1.
    Li Y, An J, Huang S, Liao H, Weng Y, Cai S, Zhang J (2014) PLCE1 suppresses p53 expression in esophageal cancer cells. Cancer Investig 32(6):236–240. doi: 10.3109/07357907.2014.905588 CrossRefGoogle Scholar
  2. 2.
    Han B, Li W, Sun Y, Zhou L, Xu Y, Zhao X (2014) A prolyl-hydroxylase inhibitor, ethyl-3,4-dihydroxybenzoate, induces cell autophagy and apoptosis in esophageal squamous cell carcinoma cells via up-regulation of BNIP3 and N-myc downstream-regulated gene-1. PLoS ONE 9(9):e107204. doi: 10.1371/journal.pone.0107204 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cui XB, Li S, Li TT, Peng H, Jin TT, Zhang SM, Liu CX, Yang L, Shen YY, Li SG, Li N, Li Y, Hu JM, Jiang JF, Suo J, Qi Y, Liang WH, Wang LH, Dang HW, Li L, Cao WW, Wei Y, Laibo Y, Wu CY, Yuan XL, Zhou H, Zheng Y, Chen YZ, Li F (2016) Targeting oncogenic PLCE1 by miR-145 impairs tumor proliferation and metastasis of esophageal squamous cell carcinoma. Oncotarget 7(2):1777–1795. doi: 10.18632/oncotarget.6499 CrossRefPubMedGoogle Scholar
  4. 4.
    Zhao L, Wei ZB, Yang CQ, Chen JJ, Li D, Ji AF, Ma L (2014) Effects of PLCE1 gene silencing by RNA interference on cell cycling and apoptosis in esophageal carcinoma cells. Asian Pac J Cancer Prev 15(13):5437–5442CrossRefPubMedGoogle Scholar
  5. 5.
    Wang LD, Zhou FY, Li XM, Sun LD, Song X, Jin Y, Li JM, Kong GQ, Qi H, Cui J, Zhang LQ, Yang JZ, Li JL, Li XC, Ren JL, Liu ZC, Gao WJ, Yuan L, Wei W, Zhang YR, Wang WP, Sheyhidin I, Li F, Chen BP, Ren SW, Liu B, Li D, Ku JW, Fan ZM, Zhou SL, Guo ZG, Zhao XK, Liu N, Ai YH, Shen FF, Cui WY, Song S, Guo T, Huang J, Yuan C, Huang J, Wu Y, Yue WB, Feng CW, Li HL, Wang Y, Tian JY, Lu Y, Yuan Y, Zhu WL, Liu M, Fu WJ, Yang X, Wang HJ, Han SL, Chen J, Han M, Wang HY, Zhang P, Li XM, Dong JC, Xing GL, Wang R, Guo M, Chang ZW, Liu HL, Guo L, Yuan ZQ, Liu H, Lu Q, Yang LQ, Zhu FG, Yang XF, Feng XS, Wang Z, Li Y, Gao SG, Qige Q, Bai LT, Yang WJ, Lei GY, Shen ZY, Chen LQ, Li EM, Xu LY, Wu ZY, Cao WK, Wang JP, Bao ZQ, Chen JL, Ding GC, Zhuang X, Zhou YF, Zheng HF, Zhang Z, Zuo XB, Dong ZM, Fan DM, He X, Wang J, Zhou Q, Zhang QX, Jiao XY, Lian SY, Ji AF, Lu XM, Wang JS, Chang FB, Lu CD, Chen ZG, Miao JJ, Fan ZL, Lin RB, Liu TJ, Wei JC, Kong QP, Lan Y, Fan YJ, Gao FS, Wang TY, Xie D, Chen SQ, Yang WC, Hong JY, Wang L, Qiu SL, Cai ZM, Zhang XJ (2010) Genome-wide association study of esophageal squamous cell carcinoma in Chinese subjects identifies susceptibility loci at PLCE1 and C20orf54. Nat Genet 42(9):759–763. doi: 10.1038/ng.648 CrossRefPubMedGoogle Scholar
  6. 6.
    Oka M, Edamatsu H, Kunisada M, Hu L, Takenaka N, Dien S, Sakaguchi M, Kitazawa R, Norose K, Kataoka T, Nishigori C (2010) Enhancement of ultraviolet B-induced skin tumor development in phospholipase Cepsilon-knockout mice is associated with decreased cell death. Carcinogenesis 31(10):1897–1902. doi: 10.1093/carcin/bgq164 CrossRefPubMedGoogle Scholar
  7. 7.
    Yu S, Wu F, Guo K, Shao Q, Tao H (2014) Expression of phospholipase C epsilon-1 in gastric cancer and its association with prognosis. J Gastrointest Surg 17(4):378–382Google Scholar
  8. 8.
    Liu X, Zhang X, Wang Z, Chang J, Wu Z, Zhang Z, Wang S, Li J (2014) Genetic polymorphism of the phospholipase C epsilon 1 gene and risk of gastric cancer. Chin Med J (Engl) 127(13):2511–2517Google Scholar
  9. 9.
    Luo D, Gao Y, Wang S, Wang M, Wu D, Wang W, Xu M, Zhou J, Gong W, Tan Y, Zhang Z (2011) Genetic variation in PLCE1 is associated with gastric cancer survival in a Chinese population. J Gastroenterol 46(11):1260–1266. doi: 10.1007/s00535-011-0445-3 CrossRefPubMedGoogle Scholar
  10. 10.
    Ou L, Guo Y, Luo C, Wu X, Zhao Y, Cai X (2010) RNA interference suppressing PLCE1 gene expression decreases invasive power of human bladder cancer T24 cell line. Cancer Genet Cytogenet 200(2):110–119. doi: 10.1016/j.cancergencyto.2010.01.021 CrossRefPubMedGoogle Scholar
  11. 11.
    Sharma KL, Rai R, Srivastava A, Sharma A, Misra S, Kumar A, Mittal B (2014) A multigenic approach to evaluate genetic variants of PLCE1, LXRs, MMPs, TIMP, and CYP genes in gallbladder cancer predisposition. Tumour Biol 35(9):8597–8606. doi: 10.1007/s13277-014-2094-7 CrossRefPubMedGoogle Scholar
  12. 12.
    Ma H, Wang LE, Liu Z, Sturgis EM, Wei Q (2011) Association between novel PLCE1 variants identified in published esophageal cancer genome-wide association studies and risk of squamous cell carcinoma of the head and neck. BMC Cancer 11:258. doi: 10.1186/1471-2407-11-258 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wang X, Zhou C, Qiu G, Yang Y, Yan D, Xing T, Fan J, Tang H, Peng Z (2012) Phospholipase C epsilon plays a suppressive role in incidence of colorectal cancer. Med Oncol 29(2):1051–1058. doi: 10.1007/s12032-011-9981-1 CrossRefPubMedGoogle Scholar
  14. 14.
    Wang Q, Chen P, Chen D, Liu F, Pan W (2014) Association between phospholipase C epsilon gene (PLCE1) polymorphism and colorectal cancer risk in a Chinese population. J Int Med Res 42(2):270–281. doi: 10.1177/0300060513492484 CrossRefPubMedGoogle Scholar
  15. 15.
    Li WQ, Hu N, Burton VH, Yang HH, Su H, Conway CM, Wang L, Wang C, Ding T, Xu Y, Giffen C, Abnet CC, Goldstein AM, Hewitt SM, Taylor PR (2014) PLCE1 mRNA and protein expression and survival of patients with esophageal squamous cell carcinoma and gastric adenocarcinoma. Cancer Epidemiol Biomarkers Prev 23(8):1579–1588. doi: 10.1158/1055-9965.epi-13-1329 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chen YZ, Cui XB, Hu JM, Zhang WJ, Li SG, Yang L, Shen XH, Liu CX, Pan QF, Yu SY, Yuan XL, Yang L, Gu WY, Chen JZ, Wang LD, Li F (2013) Overexpression of PLCE1 in Kazakh esophageal squamous cell carcinoma: implications in cancer metastasis and aggressiveness. Apmis 121(10):908–918. doi: 10.1111/apm.12095 CrossRefPubMedGoogle Scholar
  17. 17.
    Hu H, Yang J, Sun Y, Yang Y, Qian J, Jin L, Wang M, Bi R, Zhang R, Zhu M, Sun M, Ma H, Wei Q, Jiang G, Zhou X, Chen H (2012) Putatively functional PLCE1 variants and susceptibility to esophageal squamous cell carcinoma (ESCC): a case-control study in eastern Chinese populations. Ann Surg Oncol 19(7):2403–2410. doi: 10.1245/s10434-011-2160-y CrossRefPubMedGoogle Scholar
  18. 18.
    Tsuchiya S (2012) The role of microRNA-210 in esophageal squamous cell carcinoma. Yakugaku Zasshi 132(9):1069–1073CrossRefPubMedGoogle Scholar
  19. 19.
    Kovarikova A, Hezova R, Srovnal J, Redova-Lojova M, Slaby O (2014) The role of microRNAs in molecular pathology of esophageal cancer and their potential usage in clinical oncology. Clin Oncol 27(2):87–96Google Scholar
  20. 20.
    Sakai NS, Samia-Aly E, Barbera M, Fitzgerald RC (2013) A review of the current understanding and clinical utility of miRNAs in esophageal cancer. Semin Cancer Biol 23(6 Pt B):512–521. doi: 10.1016/j.semcancer.2013.08.005 CrossRefPubMedGoogle Scholar
  21. 21.
    Meng XR, Lu P, Mei JZ, Liu GJ, Fan QX (2014) Expression analysis of miRNA and target mRNAs in esophageal cancer. Braz J Med Biol Res 47(9):811–817CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Jiang Y, Duan Y, Zhou H (2015) MicroRNA-27a directly targets to inhibit cell proliferation in esophageal squamous cell carcinoma. Oncol Lett 9(1):471–477. doi: 10.3892/ol.2014.2701 CrossRefPubMedGoogle Scholar
  23. 23.
    Song Y, Li J, Zhu Y, Dai Y, Zeng T, Liu L, Li J, Wang H, Qin Y, Zeng M, Guan XY, Li Y (2014) MicroRNA-9 promotes tumor metastasis via repressing E-cadherin in esophageal squamous cell carcinoma. Oncotarget 5(22):11669–11680. doi: 10.18632/oncotarget.2581 PubMedPubMedCentralGoogle Scholar
  24. 24.
    Zhang BJ, Gong HY, Zheng F, Liu DJ, Liu HX (2014) Up-regulation of miR-335 predicts a favorable prognosis in esophageal squamous cell carcinoma. Int J Clin Exp Pathol 7(9):6213–6218PubMedPubMedCentralGoogle Scholar
  25. 25.
    Han N, Zhao W, Zhang Z, Zheng P (2016) MiR-328 suppresses the survival of esophageal cancer cells by targeting PLCE1. Biochem Biophys Res Commun 470(1):175–180. doi: 10.1016/j.bbrc.2016.01.020 CrossRefPubMedGoogle Scholar
  26. 26.
    Tanaka K, Miyata H, Sugimura K, Fukuda S, Kanemura T, Yamashita K, Miyazaki Y, Takahashi T, Kurokawa Y, Yamasaki M, Wada H, Nakajima K, Takiguchi S, Mori M, Doki Y (2015) miR-27 is associated with chemoresistance in esophageal cancer through transformation of normal fibroblasts to cancer-associated fibroblasts. Carcinogenesis 36(8):894–903. doi: 10.1093/carcin/bgv067 CrossRefPubMedGoogle Scholar
  27. 27.
    Ilhan-Mutlu A, Tezcan G, Schoppmann SF, Preusser M, Spyridoula K, Karanikas G, Birner P (2015) microRNA-21 expression is elevated in esophageal adenocarcinoma after neoadjuvant chemotherapy. Cancer Investig 33(6):246–250. doi: 10.3109/07357907.2015.1024319 CrossRefGoogle Scholar
  28. 28.
    Fu C, Dong W, Wang Z, Li H, Qin Q, Li B (2014) The expression of miR-21 and miR-375 predict prognosis of esophageal cancer. Biochem Biophys Res Commun 446(4):1197–1203. doi: 10.1016/j.bbrc.2014.03.087 CrossRefPubMedGoogle Scholar
  29. 29.
    Yuan JM, Mao WM, Luo J, Peng BF, Zheng ZG, Ling ZQ (2013) Effect of miRNA-106a expression on the prognosis of patients with esophageal squamous cell carcinoma. Zhonghua Zhong Liu Za Zhi 35(8):590–594PubMedGoogle Scholar
  30. 30.
    Gonzalez-Plaza JJ, Hulak N, Garcia-Fuentes E, Garrido-Sanchez L, Zhumadilov Z, Akilzhanova A (2015) Oesophageal squamous cell carcinoma (ESCC): advances through omics technologies, towards ESCC salivaomics. Drug Discov Ther 9(4):247–257. doi: 10.5582/ddt.2015.01042 CrossRefPubMedGoogle Scholar
  31. 31.
    Cui XB, Pang XL, Li S, Jin J, Hu JM, Yang L, Liu CX, Li L, Wen SJ, Liang WH, Chen YZ, Li F (2014) Elevated expression patterns and tight correlation of the PLCE1 and NF-κB signaling in Kazakh patients with esophageal carcinoma. Med Oncol (Northwood, Lond, Engl) 31(1):791. doi: 10.1007/s12032-013-0791-5 CrossRefGoogle Scholar
  32. 32.
    Cheng H, Luo C, Wu X, Zhang Y, He Y, Wu Q, Xia Y, Zhang J (2011) shRNA targeting PLCepsilon inhibits bladder cancer cell growth in vitro and in vivo. Urology 78(2):474.e7–474.e11. doi: 10.1016/j.urology.2011.03.014 CrossRefGoogle Scholar
  33. 33.
    Bu J, Li H, Li XY, Liu LH, Sun W, Xiao T (2015) Prognostic role of MicroRNA-126 for survival in malignant tumors: a systematic review and meta-analysis. Dis Markers 2015:739469. doi: 10.1155/2015/739469 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Nie ZC, Weng WH, Shang YS, Long Y, Li J, Xu YT, Li Z (2015) MicroRNA-126 is down-regulated in human esophageal squamous cell carcinoma and inhibits the proliferation and migration in EC109 cell via PI3 K/AKT signaling pathway. Int J Clin Exp Pathol 8(5):4745–4754PubMedPubMedCentralGoogle Scholar
  35. 35.
    Otsubo T, Akiyama Y, Hashimoto Y, Shimada S, Goto K, Yuasa Y (2011) MicroRNA-126 inhibits SOX2 expression and contributes to gastric carcinogenesis. PLoS ONE 6(1):e16617. doi: 10.1371/journal.pone.0016617 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Park JK, Henry JC, Jiang J, Esau C, Gusev Y, Lerner MR, Postier RG, Brackett DJ, Schmittgen TD (2011) miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor. Biochem Biophys Res Commun 406(4):518–523. doi: 10.1016/j.bbrc.2011.02.065 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Tian H, Hou L, Xiong YM, Huang JX, Zhang WH, Pan YY, Song XR (2016) miR-132 targeting E2F5 suppresses cell proliferation, invasion, migration in ovarian cancer cells. Am J Transl Res 8(3):1492–1501PubMedPubMedCentralGoogle Scholar
  38. 38.
    Zhang JX, Zhai JF, Yang XT, Wang J (2016) MicroRNA-132 inhibits migration, invasion and epithelial-mesenchymal transition by regulating TGFbeta1/Smad2 in human non-small cell lung cancer. Eur Rev Med Pharmacol Sci 20(18):3793–3801PubMedGoogle Scholar
  39. 39.
    Xu D, He XX, Chang Y, Sun SZ, Xu CR, Lin JS (2012) Downregulation of MiR-93 expression reduces cell proliferation and clonogenicity of HepG2 cells. Hepatogastroenterology 59(120):2367–2373. doi: 10.5754/hge12458 PubMedGoogle Scholar
  40. 40.
    Shi J, Zhuang Y, Liu XK, Zhang YX, Zhang Y (2014) TGF-beta induced RBL2 expression in renal cancer cells by down-regulating miR-93. Clin Transl Oncol 16(11):986–992. doi: 10.1007/s12094-014-1185-7 CrossRefPubMedGoogle Scholar
  41. 41.
    Tang Q, Zou Z, Zou C, Zhang Q, Huang R, Guan X, Li Q, Han Z, Wang D, Wei H, Gao X, Wang X (2015) MicroRNA-93 suppress colorectal cancer development via Wnt/beta-catenin pathway downregulating. Tumour Biol 36(3):1701–1710. doi: 10.1007/s13277-014-2771-6 CrossRefPubMedGoogle Scholar
  42. 42.
    Zhu C, Qin YR, Xie D, Chua DT, Fung JM, Chen L, Fu L, Hu L, Guan XY (2009) Characterization of tumor suppressive function of P300/CBP-associated factor at frequently deleted region 3p24 in esophageal squamous cell carcinoma. Oncogene 28(31):2821–2828. doi: 10.1038/onc.2009.137 CrossRefPubMedGoogle Scholar
  43. 43.
    Malatesta M, Steinhauer C, Mohammad F, Pandey DP, Squatrito M, Helin K (2013) Histone acetyltransferase PCAF is required for Hedgehog-Gli-dependent transcription and cancer cell proliferation. Cancer Res 73(20):6323–6333. doi: 10.1158/0008-5472.can-12-4660 CrossRefPubMedGoogle Scholar
  44. 44.
    Ni R, Shen X, Wu H, Zhu W, Ni J, Huang Z, Song Y, Gao X (2010) Expression and significance of integrins subunits in laryngeal squamous cell carcinoma. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 24(15):686–689PubMedGoogle Scholar
  45. 45.
    Xu Z, Wu R (2012) Alteration in metastasis potential and gene expression in human lung cancer cell lines by ITGB8 silencing. Anat Rec (Hoboken) 295(9):1446–1454. doi: 10.1002/ar.22521 CrossRefGoogle Scholar
  46. 46.
    Tchaicha JH, Reyes SB, Shin J, Hossain MG, Lang FF, McCarty JH (2011) Glioblastoma angiogenesis and tumor cell invasiveness are differentially regulated by β8 integrin. Cancer Res 71(20):6371–6381. doi: 10.1158/0008-5472.can-11-0991 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Shankar J, Nabi IR (2015) Actin cytoskeleton regulation of epithelial mesenchymal transition in metastatic cancer cells. PLoS ONE 10(3):e0119954. doi: 10.1371/journal.pone.0119954 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Tang YN, Ding WQ, Guo XJ, Yuan XW, Wang DM, Song JG (2015) Epigenetic regulation of Smad2 and Smad3 by profilin-2 promotes lung cancer growth and metastasis. Nat Commun 6:8230. doi: 10.1038/ncomms9230 CrossRefPubMedGoogle Scholar
  49. 49.
    Ma CY, Zhang CP, Zhong LP, Pan HY, Chen WT, Wang LZ, Andrew OW, Ji T, Han W (2011) Decreased expression of profilin 2 in oral squamous cell carcinoma and its clinicopathological implications. Oncol Rep 26(4):813–823. doi: 10.3892/or.2011.1365 PubMedGoogle Scholar
  50. 50.
    Cui XB, Zhang SM, Xu YX, Dang HW, Liu CX, Wang LH, Yang L, Hu JM, Liang WH, Jiang JF, Li N, Li Y, Chen YZ, Li F (2016) PFN2, a novel marker of unfavorable prognosis, is a potential therapeutic target involved in esophageal squamous cell carcinoma. J Transl Med 14(1):137. doi: 10.1186/s12967-016-0884-y CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Tian M, Neil JR, Schiemann WP (2011) Transforming growth factor-beta and the hallmarks of cancer. Cell Signal 23(6):951–962. doi: 10.1016/j.cellsig.2010.10.015 CrossRefPubMedGoogle Scholar
  52. 52.
    Drabsch Y, ten Dijke P (2012) TGF-beta signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev 31(3–4):553–568. doi: 10.1007/s10555-012-9375-7 CrossRefPubMedGoogle Scholar
  53. 53.
    Huber MA, Azoitei N, Baumann B, Grunert S, Sommer A, Pehamberger H, Kraut N, Beug H, Wirth T (2004) NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Investig 114(4):569–581. doi: 10.1172/jci21358 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Aithal MG, Rajeswari N (2013) Role of Notch signalling pathway in cancer and its association with DNA methylation. J Genet 92(3):667–675CrossRefPubMedGoogle Scholar
  55. 55.
    Schwarzer R, Dorken B, Jundt F (2012) Notch is an essential upstream regulator of NF-kappaB and is relevant for survival of Hodgkin and Reed-Sternberg cells. Leukemia 26(4):806–813. doi: 10.1038/leu.2011.265 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Xiaobin Cui
    • 1
  • Kaige Wang
    • 1
  • Xinqian Yang
    • 2
  • Hao Peng
    • 1
  • Xi Chen
    • 1
  • Huahua Xin
    • 1
  • Yanxia Tian
    • 1
  • Yunzhao Chen
    • 1
  • Feng Li
    • 1
    • 2
  1. 1.Department of Pathology, Key Laboratory for Xinjiang Endemic and Ethnic DiseasesShihezi University School of MedicineShiheziChina
  2. 2.Department of Pathology and Neurosurgery, Beijing ChaoYang HospitalCapital Medical UniversityBeijingChina

Personalised recommendations