Molecular and Cellular Biochemistry

, Volume 442, Issue 1–2, pp 97–109 | Cite as

Molecular modeling elucidates the cellular mechanism of synaptotagmin-SNARE inhibition: a novel plausible route to anti-wrinkle activity of botox-like cosmetic active molecules

  • Pathomwat WongrattanakamonEmail author
  • Piyarat Nimmanpipug
  • Busaban Sirithunyalug
  • Supat JiranusornkulEmail author


Synaptotagmin 1 (Syt1) is the Ca2+ sensor protein with an essential role in neurotransmitter release. Since the wrinkle formation is due to the excessive muscle fiber stimulation in the face, a helpful stratagem to diminish the wrinkle line intenseness is to weaken the innervating neuron activity through Syt1 inhibition which is one of the possible therapeutic strategies against wrinkles. Recently, experimental evidence showed that botox-like peptides, which are typically used as SNARE modulators, may inhibit Syt1. In this work, we applied molecular modeling to (1) characterize the structural framework and (2) define the atomistic information of the factors for the inhibition mechanism. The modeling identified the plausible binding cleft able to efficiently bind all botox-like peptides. The MD simulations revealed that all peptides induced significant Syt1 rigidity by binding in the cleft of the C2A–C2B interface. The consequence of this binding event is the suppression of the protein motion associated with conformational change of Syt1 from the closed form to the open form. On this basis, this finding may therefore be of subservience for the advancement of novel botox-like molecules for the therapeutic treatment of wrinkle, targeting and modulating the function of Syt1.


Anti-wrinkle Botox-like peptides Molecular docking Molecular dynamics simulation Neurotransmitters SNARE proteins Synaptotagmin 



The authors would like to thank Inte:Ligand Software-Entwicklungs und Consulting GmbH for providing an academic free license for LigandScout 4.1.

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest to declare.


  1. 1.
    Park T-Y, Shin M-J, Park S-D, Lee S-K (2013) Alleviation of abnormal synaptic neurotransmitter release by cell-permeable form of the truncated SNAP-25 upon transcutaneous delivery. Neurosci Lett 543:52–57. doi: 10.1016/j.neulet.2013.02.055 CrossRefPubMedGoogle Scholar
  2. 2.
    Blanes-Mira C, Clemente J, Jodas G, Gil A, Fernández-Ballester G, Ponsati B, Gutierrez L, Pérez-Payá E, Ferrer-Montiel A (2002) A synthetic hexapeptide (Argireline) with antiwrinkle activity. Int J Cosmet Sci 24(5):303–310. doi: 10.1046/j.1467-2494.2002.00153.x CrossRefPubMedGoogle Scholar
  3. 3.
    Wang Y, Wang M, Xiao S, Pan P, Li P, Huo J (2013) The anti-wrinkle efficacy of argireline, a synthetic hexapeptide, in Chinese subjects. Am J Clin Dermatol 14(2):147–153. doi: 10.1007/s40257-013-0009-9 CrossRefPubMedGoogle Scholar
  4. 4.
    Gorouhi F, Maibach HI (2017) Topical peptides and proteins for aging skin. In: Farage MA, Miller KW, Maibach HI (eds) Textbook of aging skin. Springer, Berlin, pp 1865–1896. doi: 10.1007/978-3-662-47398-6_101 CrossRefGoogle Scholar
  5. 5.
    Baker RW, Hughson FM (2016) Chaperoning SNARE assembly and disassembly. Nat Rev Mol Cell Biol 17(8):465–479. doi: 10.1038/nrm.2016.65 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Fuson KL, Montes M, Robert JJ, Sutton RB (2007) Structure of human synaptotagmin 1 C2AB in the absence of Ca2+ reveals a novel domain association. Biochemistry 46(45):13041–13048. doi: 10.1021/bi701651k CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jung CH, Yang YS, Kim J-S, Shin Y-K, Hwang JS, Son ED, Lee HH, Chung KM, Oh JM, Lee JH, Kweon D-H (2009) Inhibition of SNARE-driven neuroexocytosis by plant extracts. Biotechnol Lett 31(3):361–369. doi: 10.1007/s10529-008-9878-z CrossRefPubMedGoogle Scholar
  8. 8.
    Husein el Hadmed H, Castillo RF (2016) Cosmeceuticals: peptides, proteins, and growth factors. J Cosmet Dermatol 15(4):514–519. doi: 10.1111/jocd.12229 CrossRefPubMedGoogle Scholar
  9. 9.
    Badhan R, Penny J (2006) In silico modelling of the interaction of flavonoids with human P-glycoprotein nucleotide-binding domain. Eur J Med Chem 41(3):285–295. doi: 10.1016/j.ejmech.2005.11.012 CrossRefPubMedGoogle Scholar
  10. 10.
    Palestro PH, Gavernet L, Estiu GL, Bruno Blanch LE (2014) Docking applied to the prediction of the affinity of compounds to P-glycoprotein. Biomed Res Int 2014:10. doi: 10.1155/2014/358425 CrossRefGoogle Scholar
  11. 11.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38. doi: 10.1016/0263-7855(96)00018-5 CrossRefPubMedGoogle Scholar
  12. 12.
    Roe DR, Cheatham TE (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9(7):3084–3095. doi: 10.1021/ct400341p CrossRefPubMedGoogle Scholar
  13. 13.
    Venkateswarlu D (2014) Role of hydrophobic mutations on the binding affinity and stability of blood coagulation factor VIIIa: a computational molecular dynamics and free-energy analysis. Biochem Biophys Res Commun 450(1):735–740. doi: 10.1016/j.bbrc.2014.06.043 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Miller BR, McGee TD, Swails JM, Homeyer N, Gohlke H, Roitberg AE (2012) an efficient program for end-state free energy calculations. J Chem Theory Comput 8(9):3314–3321. doi: 10.1021/ct300418h CrossRefPubMedGoogle Scholar
  15. 15.
    Wolber G, Langer T (2005) LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model 45(1):160–169. doi: 10.1021/ci049885e CrossRefPubMedGoogle Scholar
  16. 16.
    Lazaridis T, Karplus M (1999) Discrimination of the native from misfolded protein models with an energy function including implicit solvation 1. J Mol Biol 288(3):477–487. doi: 10.1006/jmbi.1999.2685 CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang C, Feng L-J, Huang Y, Wu D, Li Z, Zhou Q, Wu Y, Luo H-B (2017) Discovery of novel phosphodiesterase-2A inhibitors by structure-based virtual screening, structural optimization, and bioassay. J Chem Inf Model 57(2):355–364. doi: 10.1021/acs.jcim.6b00551 CrossRefPubMedGoogle Scholar
  18. 18.
    Yadav S, Pandey SK, Singh VK, Goel Y, Kumar A, Singh SM (2017) Molecular docking studies of 3-bromopyruvate and its derivatives to metabolic regulatory enzymes: implication in designing of novel anticancer therapeutic strategies. PLoS ONE 12(5):e0176403. doi: 10.1371/journal.pone.0176403 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Oh HI, Hoff JE, Armstrong GS, Haff LA (1980) Hydrophobic interaction in tannin-protein complexes. J Agric Food Chem 28(2):394–398. doi: 10.1021/jf60228a020 CrossRefGoogle Scholar
  20. 20.
    Zhang W, Laursen RA (1998) Structure-function relationships in a type I antifreeze polypeptide: the role of threonine methyl and hydroxyl groups in antifreeze activity. J Biol Chem 273(52):34806–34812. doi: 10.1074/jbc.273.52.34806 CrossRefPubMedGoogle Scholar
  21. 21.
    Khare SD, Ding F, Gwanmesia KN, Dokholyan NV (2005) Molecular origin of polyglutamine aggregation in neurodegenerative diseases. PLoS Comput Biol 1(3):e30. doi: 10.1371/journal.pcbi.0010030 CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Gellman SH (1991) On the role of methionine residues in the sequence-independent recognition of nonpolar protein surfaces. Biochemistry 30(27):6633–6636. doi: 10.1021/bi00241a001 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Laboratory for Molecular Design and Simulation (LMDS), Department of Pharmaceutical Sciences, Faculty of PharmacyChiang Mai UniversityChiang MaiThailand
  2. 2.Computational Simulation and Modelling Laboratory (CSML), Department of Chemistry, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  3. 3.Department of Pharmaceutical Sciences, Faculty of PharmacyChiang Mai UniversityChiang MaiThailand

Personalised recommendations