Molecular and Cellular Biochemistry

, Volume 442, Issue 1–2, pp 29–38 | Cite as

Multiple non-catalytic ADAMs are novel integrin α4 ligands

  • Lei Wang
  • Jason A. Hoggard
  • Erica D. Korleski
  • Gideon V. Long
  • Brandy C. Ree
  • Kenneth Hensley
  • Stephen R. Bond
  • Tyra G. Wolfsberg
  • JianMing Chen
  • Tonya N. Zeczycki
  • Lance C. BridgesEmail author


The ADAM (a disintegrin and metalloprotease) protein family uniquely exhibits both catalytic and adhesive properties. In the well-defined process of ectodomain shedding, ADAMs transform latent, cell-bound substrates into soluble, biologically active derivatives to regulate a spectrum of normal and pathological processes. In contrast, the integrin ligand properties of ADAMs are not fully understood. Emerging models posit that ADAM–integrin interactions regulate shedding activity by localizing or sequestering the ADAM sheddase. Interestingly, 8 of the 21 human ADAMs are predicted to be catalytically inactive. Unlike their catalytically active counterparts, integrin recognition of these “dead” enzymes has not been largely reported. The present study delineates the integrin ligand properties of a group of non-catalytic ADAMs. Here we report that human ADAM11, ADAM23, and ADAM29 selectively support integrin α4-dependent cell adhesion. This is the first demonstration that the disintegrin-like domains of multiple catalytically inactive ADAMs are ligands for a select subset of integrin receptors that also recognize catalytically active ADAMs.


ADAM Disintegrin Integrin Cell adhesion Lymphocyte 



This research was supported in part by the Intramural Research Program of the National Human Genome Research Institute, National Institutes of Health and internal funds from the Arkansas College of Osteopathic Medicine and Brody School of Medicine at East Carolina University.

Supplementary material

11010_2017_3190_MOESM1_ESM.jpg (715 kb)
Supplementary material 1 (JPEG 715 kb)


  1. 1.
    Edwards DR, Handsley MM, Pennington CJ (2008) The ADAM metalloproteinases. Mol Asp Med 29:258–289. doi: 10.1016/j.mam.2008.08.001 CrossRefGoogle Scholar
  2. 2.
    White JM (2003) ADAMs: modulators of cell–cell and cell–matrix interactions. Curr Opin Cell Biol 15:598–606CrossRefGoogle Scholar
  3. 3.
    Klein T, Bischoff R (2011) Active metalloproteases of the A Disintegrin and Metalloprotease (ADAM) family: biological function and structure. J Proteome Res 10:17–33. doi: 10.1021/pr100556z CrossRefPubMedGoogle Scholar
  4. 4.
    Murphy G (2009) Regulation of the proteolytic disintegrin metalloproteinases, the ‘Sheddases’. Semin Cell Dev Biol 20:138–145. doi: 10.1016/j.semcdb.2008.09.004 CrossRefPubMedGoogle Scholar
  5. 5.
    Reiss K, Ludwig A, Saftig P (2006) Breaking up the tie: disintegrin-like metalloproteinases as regulators of cell migration in inflammation and invasion. Pharmacol Ther 111:985–1006. doi: 10.1016/j.pharmthera.2006.02.009 CrossRefPubMedGoogle Scholar
  6. 6.
    Hynes RO (1987) Integrins: a family of cell surface receptors. Cell 48:549–554CrossRefGoogle Scholar
  7. 7.
    Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25CrossRefGoogle Scholar
  8. 8.
    Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687CrossRefGoogle Scholar
  9. 9.
    Wolfsberg TG, Primakoff P, Myles DG, White JM (1995) ADAM, a novel family of membrane proteins containing A Disintegrin And Metalloprotease domain: multipotential functions in cell-cell and cell-matrix interactions. J Cell Biol 131:275–278CrossRefGoogle Scholar
  10. 10.
    Huang TF (1998) What have snakes taught us about integrins? Cell Mol Life Sci 54:527–540CrossRefGoogle Scholar
  11. 11.
    Alfandari D, Cousin H, Gaultier A, Smith K, White JM, Darribere T, DeSimone DW (2001) Xenopus ADAM 13 is a metalloprotease required for cranial neural crest-cell migration. Curr Biol 11:918–930CrossRefGoogle Scholar
  12. 12.
    Huang J, Bridges LC, White JM (2005) Selective modulation of integrin-mediated cell migration by distinct ADAM family members. Mol Biol Cell 16:4982–4991CrossRefGoogle Scholar
  13. 13.
    Martin J, Eynstone LV, Davies M, Williams JD, Steadman R (2002) The role of ADAM 15 in glomerular mesangial cell migration. J Biol Chem 277:33683–33689CrossRefGoogle Scholar
  14. 14.
    McGinn OJ, English WR, Roberts S, Ager A, Newham P, Murphy G (2011) Modulation of integrin alpha4beta1 by ADAM28 promotes lymphocyte adhesion and transendothelial migration. Cell Biol Int 35:1043–1053. doi: 10.1042/CBI20100885 CrossRefPubMedGoogle Scholar
  15. 15.
    Verbisck NV, Costa ET, Costa FF, Cavalher FP, Costa MD, Muras A, Paixao VA, Moura R, Granato MF, Ierardi DF, Machado T, Melo F, Ribeiro KB, Cunha IW, Lima VC, Maciel Mdo S, Carvalho AL, Soares FF, Zanata S, Sogayar MC, Chammas R, Camargo AA (2009) ADAM23 negatively modulates alpha(v)beta(3) integrin activation during metastasis. Cancer Res 69:5546–5552. doi: 10.1158/0008-5472.CAN-08-2976 CrossRefPubMedGoogle Scholar
  16. 16.
    Bridges LC, Bowditch RD (2005) ADAM-Integrin Interactions: potential integrin regulated ectodomain shedding activity. Curr Pharm Des 11:837–847CrossRefGoogle Scholar
  17. 17.
    Stawikowska R, Cudic M, Giulianotti M, Houghten RA, Fields GB, Minond D (2013) Activity of a disintegrin and metalloprotease 17 (ADAM17) is Regulated by its non-catalytic domains and secondary structure of its substrates. J Biol Chem. doi: 10.1074/jbc.M113.462267 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gooz P, Dang Y, Higashiyama S, Twal WO, Haycraft CJ, Gooz M (2012) A disintegrin and metalloenzyme (ADAM) 17 activation is regulated by alpha5beta1 integrin in kidney mesangial cells. PLoS ONE 7:e33350. doi: 10.1371/journal.pone.0033350 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Dang M, Armbruster N, Miller MA, Cermeno E, Hartmann M, Bell GW, Root DE, Lauffenburger DA, Lodish HF, Herrlich A (2013) Regulated ADAM17-dependent EGF family ligand release by substrate-selecting signaling pathways. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1307478110 CrossRefPubMedGoogle Scholar
  20. 20.
    Smith KM, Gaultier A, Cousin H, Alfandari D, White JM, DeSimone DW (2002) The cysteine-rich domain regulates ADAM protease function in vivo. J Cell Biol 159:893–902CrossRefGoogle Scholar
  21. 21.
    Hartmann M, Herrlich A, Herrlich P (2013) Who decides when to cleave an ectodomain? Trends Biochem Sci 38:111–120. doi: 10.1016/j.tibs.2012.12.002 CrossRefPubMedGoogle Scholar
  22. 22.
    Bridges LC, Hanson KR, Tani PH, Mather T, Bowditch RD (2003) Integrin alpha4beta1-dependent adhesion to ADAM 28 (MDC-L) requires an extended surface of the disintegrin domain. Biochemistry 42:3734–3741CrossRefGoogle Scholar
  23. 23.
    Cal S, Freije JM, Lopez JM, Takada Y, Lopez-Otin C (2000) ADAM 23/MDC3, a human disintegrin that promotes cell adhesion via interaction with the alphavbeta3 integrin through an RGD-independent mechanism. Mol Biol Cell 11:1457–1469CrossRefGoogle Scholar
  24. 24.
    Luo BH, Carman CV, Springer TA (2007) Structural basis of integrin regulation and signaling. Annu Rev Immunol 25:619–647. doi: 10.1146/annurev.immunol.25.022106.141618 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Shimoda M, Hashimoto G, Mochizuki S, Ikeda E, Nagai N, Ishida S, Okada Y (2007) Binding of ADAM28 to P-selectin glycoprotein ligand-1 enhances P-selectin-mediated leukocyte adhesion to endothelial cells. J Biol Chem 282:25864–25874. doi: 10.1074/jbc.M702414200 CrossRefPubMedGoogle Scholar
  26. 26.
    Bridges LC, Tani PH, Hanson KR, Roberts CM, Judkins MB, Bowditch RD (2002) The lymphocyte metalloprotease MDC-L (ADAM 28) is a ligand for the integrin alpha4beta1. J Biol Chem 277:3784–3792CrossRefGoogle Scholar
  27. 27.
    Bridges LC, Sheppard D, Bowditch RD (2005) ADAM disintegrin-like domain recognition by the lymphocyte integrins alpha4beta1 and alpha4beta7. Biochem J 387:101–108. doi: 10.1042/BJ20041444 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wang L, DeMarco SS, Chen J, Phillips CM, Bridges LC (2015) Retinoids bias integrin expression and function in cutaneous T-cell lymphoma. J Invest Dermatol 135:2102–2108. doi: 10.1038/jid.2015.122 CrossRefPubMedGoogle Scholar
  29. 29.
    Long J, Li M, Ren Q, Zhang C, Fan J, Duan Y, Chen J, Li B, Deng L (2012) Phylogenetic and molecular evolution of the ADAM (A Disintegrin And Metalloprotease) gene family from Xenopus tropicalis, to Mus musculus, Rattus norvegicus, and Homo sapiens. Gene 507:36–43. doi: 10.1016/j.gene.2012.07.016 CrossRefPubMedGoogle Scholar
  30. 30.
    Bahudhanapati H, Bhattacharya S, Wei S (2015) Evolution of vertebrate adam genes; duplication of testicular adams from ancient Adam9/9-like loci. PLoS ONE 10:e0136281. doi: 10.1371/journal.pone.0136281 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Liu H, Shim AH, He X (2009) Structural characterization of the ectodomain of a disintegrin and metalloproteinase-22 (ADAM22), a neural adhesion receptor instead of metalloproteinase: insights on ADAM function. J Biol Chem 284:29077–29086. doi: 10.1074/jbc.M109.014258 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wewer UM, Morgelin M, Holck P, Jacobsen J, Lydolph MC, Johnsen AH, Kveiborg M, Albrechtsen R (2006) ADAM12 is a four-leafed clover: the excised prodomain remains bound to the mature enzyme. J Biol Chem 281:9418–9422. doi: 10.1074/jbc.M513580200 CrossRefPubMedGoogle Scholar
  33. 33.
    Eto K, Puzon-McLaughlin W, Sheppard D, Sehara-Fujisawa A, Zhang XP, Takada Y (2000) RGD-independent binding of integrin alpha9beta1 to the ADAM-12 and -15 disintegrin domains mediates cell-cell interaction. J Biol Chem 275:34922–34930CrossRefGoogle Scholar
  34. 34.
    Moss ML, White JM, Lambert MH, Andrews RC (2001) TACE and other ADAM proteases as targets for drug discovery. Drug Discov Today 6:417–426CrossRefGoogle Scholar
  35. 35.
    Howard L, Maciewicz RA, Blobel CP (2000) Cloning and characterization of ADAM28: evidence for autocatalytic pro-domain removal and for cell surface localization of mature ADAM28. Biochem J 348(Pt 1):21–27CrossRefGoogle Scholar
  36. 36.
    Taylor DR, Parkin ET, Cocklin SL, Ault JR, Ashcroft AE, Turner AJ, Hooper NM (2009) Role of ADAMs in the ectodomain shedding and conformational conversion of the prion protein. J Biol Chem 284:22590–22600. doi: 10.1074/jbc.M109.032599 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Eto K, Huet C, Tarui T, Kupriyanov S, Liu HZ, Puzon-McLaughlin W, Zhang XP, Sheppard D, Engvall E, Takada Y (2002) Functional classification of ADAMs based on a conserved motif for binding to integrin alpha 9beta 1: implications for sperm-egg binding and other cell interactions. J Biol Chem 277:17804–17810CrossRefGoogle Scholar
  38. 38.
    Yednock TA, Cannon C, Fritz LC, Sanchez-Madrid F, Steinman L, Karin N (1992) Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 356:63–66. doi: 10.1038/356063a0 CrossRefPubMedGoogle Scholar
  39. 39.
    von Andrian UH, Engelhardt B (2003) Alpha4 integrins as therapeutic targets in autoimmune disease. N Engl J Med 348:68–72. doi: 10.1056/NEJMe020157 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Lei Wang
    • 1
  • Jason A. Hoggard
    • 1
  • Erica D. Korleski
    • 1
  • Gideon V. Long
    • 2
  • Brandy C. Ree
    • 2
  • Kenneth Hensley
    • 2
  • Stephen R. Bond
    • 3
  • Tyra G. Wolfsberg
    • 3
  • JianMing Chen
    • 1
  • Tonya N. Zeczycki
    • 1
  • Lance C. Bridges
    • 1
    • 2
    Email author
  1. 1.Department of Biochemistry and Molecular Biology, The Brody School of MedicineEast Carolina UniversityGreenvilleUSA
  2. 2.Biochemistry, Molecular and Cell SciencesArkansas College of Osteopathic Medicine, Arkansas Colleges of Health EducationFt. SmithUSA
  3. 3.Computational and Statistical Genomics Branch, Division of Intramural ResearchNational Human Genome Research Institute, National Institutes of HealthBethesdaUSA

Personalised recommendations