Molecular and Cellular Biochemistry

, Volume 442, Issue 1–2, pp 19–28 | Cite as

The CCAAT box in the proximal SERCA2 gene promoter regulates basal and stress-induced transcription in cardiomyocytes

  • Jorge Fragoso-Medina
  • Gabriela Rodriguez
  • Angel Zarain-Herzberg
Article
  • 157 Downloads

Abstract

The cardiac sarco/endoplasmic reticulum Ca2+-ATPase-2a (SERCA2a) is vital for the correct handling of calcium concentration in cardiomyocytes. Recent studies showed that the induction of endoplasmic reticulum (ER) stress (ERS) with the SERCA2 inhibitor Thapsigargin (Tg) increases the mRNA and protein levels of SERCA2a. The SERCA2 gene promoter contains an ERS response element (ERSE) at position −78 bp that is conserved among species and might transcriptionally regulate SERCA2 gene expression. However, its involvement in SERCA2 basal and calcium-mediated transcriptional activation has not been elucidated. In this work, we show that in cellular cultures of neonatal rat ventricular myocytes, the treatment with Tg or the calcium ionophore A23187 increases the SERCA2a mRNA and protein abundance, as well as the transcriptional activity of two chimeric human SERCA2 gene constructs, containing −254 and −2579 bp of 5′-regulatory region cloned in the pGL3-basic vector and transiently transfected in cultured cardiomyocytes. We found that the ERSE present in the SERCA2 proximal promoter contains a CCAAT box that is involved in basal and ERS-mediated hSERCA2 transcriptional activation. The EMSA results showed that the CCAAT box present in the ERSE recruits the NF-Y transcription factor. Additionally, by ChIP assays, we confirmed in vivo binding of NF-Y and C/EBPβ transcription factors to the SERCA2 gene proximal promoter.

Keywords

SERCA2 Stress Calcium Transcriptional regulation NF-Y C/EBPβ 

Notes

Acknowledgements

The work was funded by Consejo Nacional de Ciencia y Tecnología (CONACyT) Grant 164413 to A.Z.-H. and by Scholarship CONACyT 271055 to J.F.-M. We thank Dr. Iván Meneses-Morales, Dr. Rafael Estrada-Avilés, and M.Sc. Eduardo Izquierdo-Torres for their valuable comments to improve this manuscript.

Funding

None of the authors have financial or personal relationships that could influence their work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Supplementary material

11010_2017_3189_MOESM1_ESM.pdf (196 kb)
Supplementary material 1 (PDF 195 kb)
11010_2017_3189_MOESM2_ESM.pdf (208 kb)
Supplementary material 2 (PDF 207 kb)

References

  1. 1.
    Clapham DE (2007) Calcium signaling. Cell 131(6):1047–1058. doi: 10.1016/j.cell.2007.11.028 CrossRefPubMedGoogle Scholar
  2. 2.
    Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415(6868):198–205. doi: 10.1038/415198a CrossRefPubMedGoogle Scholar
  3. 3.
    Caspersen C, Pedersen PS, Treiman M (2000) The sarco/endoplasmic reticulum calcium-ATPase 2b is an endoplasmic reticulum stress-inducible protein. J Biol Chem 275(29):22363–22372. doi: 10.1074/jbc.M001569200 CrossRefPubMedGoogle Scholar
  4. 4.
    Prasad AM, Inesi G (2009) Effects of thapsigargin and phenylephrine on calcineurin and protein kinase C signaling functions in cardiac myocytes. Am J Physiol Cell Physiol 296(5):C992–C1002. doi: 10.1152/ajpcell.00594.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wu KD, Bungard D, Lytton J (2001) Regulation of SERCA Ca2 + pump expression by cytoplasmic Ca2 + in vascular smooth muscle cells. Am J Physiol Cell Physiol 280(4):C843–C851CrossRefPubMedGoogle Scholar
  6. 6.
    Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13(10):1211–1233CrossRefPubMedGoogle Scholar
  7. 7.
    Marcus N, Green M (1997) NF-Y, a CCAAT box-binding protein, is one of the trans-acting factors necessary for the response of the murine ERp72 gene to protein traffic. DNA Cell Biol 16(9):1123–1131. doi: 10.1089/dna.1997.16.1123 CrossRefPubMedGoogle Scholar
  8. 8.
    Janetzki S, Palla D, Rosenhauer V, Lochs H, Lewis JJ, Srivastava PK (2000) Immunization of cancer patients with autologous cancer-derived heat shock protein gp96 preparations: a pilot study. Int J Cancer 88(2):232–238. doi: 10.1002/1097-0215(20001015)88:2<232:AID-IJC14>3.0.CO CrossRefPubMedGoogle Scholar
  9. 9.
    Ferrari DM, Soling HD (1999) The protein disulphide-isomerase family: unravelling a string of folds. Biochem J 339(Pt 1):1–10CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    High S, Lecomte FJ, Russell SJ, Abell BM, Oliver JD (2000) Glycoprotein folding in the endoplasmic reticulum: a tale of three chaperones? FEBS Lett 476(1–2):38–41CrossRefPubMedGoogle Scholar
  11. 11.
    Thuerauf DJ, Hoover H, Meller J, Hernandez J, Su L, Andrews C, Dillmann WH, McDonough PM, Glembotski CC (2001) Sarco/endoplasmic reticulum calcium ATPase-2 expression is regulated by ATF6 during the endoplasmic reticulum stress response: intracellular signaling of calcium stress in a cardiac myocyte model system. J Biol Chem 276(51):48309–48317. doi: 10.1074/jbc.M107146200 CrossRefPubMedGoogle Scholar
  12. 12.
    Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M, Mori K (2001) Endoplasmic reticulum stress-induced formation of transcription factor complex ERSF including NF-Y (CBF) and activating transcription factors 6alpha and 6beta that activates the mammalian unfolded protein response. Mol Cell Biol 21(4):1239–1248. doi: 10.1128/MCB.21.4.1239-1248.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Baumeister P, Luo S, Skarnes WC, Sui G, Seto E, Shi Y, Lee AS (2005) Endoplasmic reticulum stress induction of the Grp78/BiP promoter: activating mechanisms mediated by YY1 and its interactive chromatin modifiers. Mol Cellular Biol 25(11):4529–4540. doi: 10.1128/MCB.25.11.4529-4540.2005 CrossRefGoogle Scholar
  14. 14.
    Li M, Baumeister P, Roy B, Phan T, Foti D, Luo S, Lee AS (2000) ATF6 as a transcription activator of the endoplasmic reticulum stress element: thapsigargin stress-induced changes and synergistic interactions with NF-Y and YY1. Mol Cell Biol 20(14):5096–5106CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Roy B, Lee AS (1999) The mammalian endoplasmic reticulum stress response element consists of an evolutionarily conserved tripartite structure and interacts with a novel stress-inducible complex. Nucl Acids Res 27(6):1437–1443CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Nardini M, Gnesutta N, Donati G, Gatta R, Forni C, Fossati A, Vonrhein C, Moras D, Romier C, Bolognesi M, Mantovani R (2013) Sequence-specific transcription factor NF-Y displays histone-like DNA binding and H2B-like ubiquitination. Cell 152(1–2):132–143. doi: 10.1016/j.cell.2012.11.047 CrossRefPubMedGoogle Scholar
  17. 17.
    Dolfini D, Gatta R, Mantovani R (2012) NF-Y and the transcriptional activation of CCAAT promoters. Crit Rev Biochem Mol Biol 47(1):29–49. doi: 10.3109/10409238.2011.628970 CrossRefPubMedGoogle Scholar
  18. 18.
    Tsukada J, Yoshida Y, Kominato Y, Auron PE (2011) The CCAAT/enhancer (C/EBP) family of basic-leucine zipper (bZIP) transcription factors is a multifaceted highly-regulated system for gene regulation. Cytokine 54(1):6–19. doi: 10.1016/j.cyto.2010.12.019 CrossRefPubMedGoogle Scholar
  19. 19.
    Ambrosino C, Iwata T, Scafoglio C, Mallardo M, Klein R, Nebreda AR (2006) TEF-1 and C/EBPbeta are major p38alpha MAPK-regulated transcription factors in proliferating cardiomyocytes. Biochem J 396(1):163–172. doi: 10.1042/BJ20051502 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bostrom P, Mann N, Wu J, Quintero PA, Plovie ER, Panakova D, Gupta RK, Xiao C, MacRae CA, Rosenzweig A, Spiegelman BM (2010) C/EBPbeta controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell 143(7):1072–1083. doi: 10.1016/j.cell.2010.11.036 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Huang GN, Thatcher JE, McAnally J, Kong Y, Qi X, Tan W, DiMaio JM, Amatruda JF, Gerard RD, Hill JA, Bassel-Duby R, Olson EN (2012) C/EBP transcription factors mediate epicardial activation during heart development and injury. Science 338(6114):1599–1603. doi: 10.1126/science.1229765 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Reyes-Juarez JL, Juarez-Rubi R, Rodriguez G, Zarain-Herzberg A (2007) Transcriptional analysis of the human cardiac calsequestrin gene in cardiac and skeletal myocytes. J Biol Chem 282(49):35554–35563. doi: 10.1074/jbc.M707788200 CrossRefPubMedGoogle Scholar
  23. 23.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res 29(9):e45CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Chomczynski P (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15(3):532–534, 536–537Google Scholar
  25. 25.
    Zarain-Herzberg A, Alvarez-Fernandez G (2002) Sarco(endo)plasmic reticulum Ca2 + -ATPase-2 gene: structure and transcriptional regulation of the human gene. Sci World J 2:1469–1483. doi: 10.1100/tsw.2002.228 CrossRefGoogle Scholar
  26. 26.
    Brady M, Koban MU, Dellow KA, Yacoub M, Boheler KR, Fuller SJ (2003) Sp1 and Sp3 transcription factors are required for trans-activation of the human SERCA2 promoter in cardiomyocytes. Cardiovasc Res 60(2):347–354CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang Y, Chen B, Li Y, Chen J, Lou G, Chen M, Zhou D (2008) Transcriptional regulation of the human PNRC promoter by NFY in HepG2 cells. J Biochem 143(5):675–683. doi: 10.1093/jb/mvn019 CrossRefPubMedGoogle Scholar
  28. 28.
    Vekich JA, Belmont PJ, Thuerauf DJ, Glembotski CC (2012) Protein disulfide isomerase-associated 6 is an ATF6-inducible ER stress response protein that protects cardiac myocytes from ischemia/reperfusion-mediated cell death. J Mol Cell Cardiol 53(2):259–267. doi: 10.1016/j.yjmcc.2012.05.005 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Yu L, Wu Q, Yang CP, Horwitz SB (1995) Coordination of transcription factors, NF-Y and C/EBP beta, in the regulation of the mdr1b promoter. Cell Growth Differ 6(12):1505–1512PubMedGoogle Scholar
  30. 30.
    Xu Y, Zhou YL, Luo W, Zhu QS, Levy D, MacDougald OA, Snead ML (2006) NF-Y and CCAAT/enhancer-binding protein alpha synergistically activate the mouse amelogenin gene. J Biol Chem 281(23):16090–16098. doi: 10.1074/jbc.M510514200 CrossRefPubMedGoogle Scholar
  31. 31.
    Zhu QS, Qian B, Levy D (2004) CCAAT/enhancer-binding protein alpha (C/EBPalpha) activates transcription of the human microsomal epoxide hydrolase gene (EPHX1) through the interaction with DNA-bound NF-Y. J Biol Chem 279(29):29902–29910. doi: 10.1074/jbc.M400438200 CrossRefPubMedGoogle Scholar
  32. 32.
    Zhu H, Gao W, Jiang H, Jin QH, Shi YF, Tsim KW, Zhang XJ (2007) Regulation of acetylcholinesterase expression by calcium signaling during calcium ionophore A23187- and thapsigargin-induced apoptosis. Int J Biochem Cell Biol 39(1):93–108. doi: 10.1016/j.biocel.2006.06.012 CrossRefPubMedGoogle Scholar
  33. 33.
    Zhu H, Gao W, Shi YF, Zhang XJ (2007) The CCAAT-binding factor CBF/NF-Y regulates the human acetylcholinesterase promoter activity during calcium ionophore A23187-induced cell apoptosis. Biochim Biophys Acta 1770(10):1475–1482. doi: 10.1016/j.bbagen.2007.07.007 CrossRefPubMedGoogle Scholar
  34. 34.
    Cha-Molstad H, Xu G, Chen J, Jing G, Young ME, Chatham JC, Shalev A (2012) Calcium channel blockers act through nuclear factor Y to control transcription of key cardiac genes. Mol Pharmacol 82(3):541–549. doi: 10.1124/mol.112.078253 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Haze K, Yoshida H, Yanagi H, Yura T, Mori K (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10(11):3787–3799CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Yoshida H, Haze K, Yanagi H, Yura T, Mori K (1998) Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem 273(50):33741–33749CrossRefPubMedGoogle Scholar
  37. 37.
    Takizawa T, Arai M, Tomaru K, Koitabashi N, Baker DL, Periasamy M, Kurabayashi M (2003) Transcription factor Sp1 regulates SERCA2 gene expression in pressure-overloaded hearts: a study using in vivo direct gene transfer into living myocardium. J Mol Cell Cardiol 35(7):777–783CrossRefPubMedGoogle Scholar
  38. 38.
    Takizawa T, Arai M, Yoguchi A, Tomaru K, Kurabayashi M, Nagai R (1999) Transcription of the SERCA2 gene is decreased in pressure-overloaded hearts: a study using in vivo direct gene transfer into living myocardium. J Mol Cell Cardiol 31(12):2167–2174. doi: 10.1006/jmcc.1999.1045 CrossRefPubMedGoogle Scholar
  39. 39.
    Baker DL, Dave V, Reed T, Misra S, Periasamy M (1998) A novel E box/AT-rich element is required for muscle-specific expression of the sarcoplasmic reticulum Ca2 + -ATPase (SERCA2) gene. Nucl Acids Res 26(4):1092–1098CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ronkainen VP, Skoumal R, Tavi P (2011) Hypoxia and HIF-1 suppress SERCA2a expression in embryonic cardiac myocytes through two interdependent hypoxia response elements. J Mol Cell Cardiol 50(6):1008–1016. doi: 10.1016/j.yjmcc.2011.02.017 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Departamento de Bioquímica, Facultad de Medicina, School of MedicineUniversidad Nacional Autónoma de MéxicoMexico CityMexico

Personalised recommendations