Advertisement

Molecular and Cellular Biochemistry

, Volume 438, Issue 1–2, pp 47–57 | Cite as

Vimentin is a crucial target for anti-metastasis therapy of nasopharyngeal carcinoma

  • Wei Wang
  • Mei Yi
  • Renya Zhang
  • Junjun Li
  • Shengnan Chen
  • Jing Cai
  • Zhaoyang Zeng
  • Xiaoling Li
  • Wei Xiong
  • Li Wang
  • Guiyuan Li
  • Bo Xiang
Article

Abstract

Nasopharyngeal carcinoma (NPC) is a unique subtype of head and neck cancer, with tendency to spread to regional lymph nodes and distant organs at early stage. Vimentin, a major cytoskeletal protein constituent of the intermediate filament, plays a critical role in the epithelial–mesenchymal transition. Overexpression of vimentin is considered to be a critical prerequisite for metastasis in numerous human cancers. Therefore, targeting vimentin for cancer therapy has gained a lot of interest. In the present study, we detected vimentin expression in NPC tissues and found that overexpression of vimentin is associated with poor prognosis of NPC patients. Silencing of vimentin in NPC CNE2 cells by RNAi suppresses cells migration and invasion in vitro. However, blocking vimentin did not affect cell proliferation of CNE2 cells. In addition, the in vivo metastatic potential of CNE2 cells transfected with Vimentin shRNA was suppressed in a nude mouse model of pulmonary metastasis. Silencing of Vimentin in CNE2 cells leads to a decrease of microvessel density and VEGF, CD31, MMP2, and MMP9 expressions in pulmonary metastatic tumors. Importantly, we found that it is easier for the tumor cells from the high vimentin-expressing pulmonary metastatic tumors to reinvade the microvessel and to form stable tumor plaques attached to the endothelial cells, which resemble the resource of circulating tumor cells and are very hard to eliminate. However, depletion of vimentin inhibits the formation of vascular tumor plaques. Our findings suggest that RNAi-based vimentin silencing may be a potential and promising anti-metastatic therapeutic strategy for NPC.

Keywords

Vimentin Metastasis Tumor plaque Nasopharyngeal carcinoma 

Notes

Acknowledgements

This study was supported in part by the Grants from The National Natural Science Foundation of China (81372304, 81572667, 81102065); the National “111” Project (Project #111-2-12); the Natural Science Foundation of Hunan Province, China (2015JJ2178); the Natural Science Foundation of Shandong Province, China (ZR2016HQ28); the Science and Technology Development Project of Jining ([2016] No. 56-28), and the Doctoral Fund of Affiliated Hospital of Jining Medical University (2016-BS-002).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Yan G, Lestari R, Long B, Fan Q, Wang Z, Guo X, Yu J, Hu J, Yang X, Chen C, Liu L, Li X, Purnomoadi A, Achmadi J, Yan X (2016) Comparative Proteomics Analysis Reveals l-Arginine Activates Ethanol Degradation Pathways in HepG2 Cells. Sci Rep 6:23340. doi: 10.1038/srep23340 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sham JS, Choy D, Wei WI (1990) Nasopharyngeal carcinoma: orderly neck node spread. Int J Radiat Oncol Biol Phys 19(4):929–933CrossRefPubMedGoogle Scholar
  3. 3.
    Pan TL, Wang PW, Huang CC, Yeh CT, Hu TH, Yu JS (2012) Network analysis and proteomic identification of vimentin as a key regulator associated with invasion and metastasis in human hepatocellular carcinoma cells. J Proteomics 75(15):4676–4692. doi: 10.1016/j.jprot.2012.02.017 CrossRefPubMedGoogle Scholar
  4. 4.
    Helfand BT, Mendez MG, Murthy SN, Shumaker DK, Grin B, Mahammad S, Aebi U, Wedig T, Wu YI, Hahn KM, Inagaki M, Herrmann H, Goldman RD (2011) Vimentin organization modulates the formation of lamellipodia. Mol Biol Cell 22(8):1274–1289. doi: 10.1091/mbc.E10-08-0699 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Satelli A, Li S (2011) Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci 68(18):3033–3046. doi: 10.1007/s00018-011-0735-1 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mendez MG, Kojima S, Goldman RD (2010) Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J 24(6):1838–1851. doi: 10.1096/fj.09-151639 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Dvorak HF, Brown LF, Detmar M, Dvorak AM (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146(5):1029–1039PubMedPubMedCentralGoogle Scholar
  8. 8.
    Sanchez-Tillo E, Liu Y, de Barrios O, Siles L, Fanlo L, Cuatrecasas M, Darling DS, Dean DC, Castells A, Postigo A (2012) EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cell Mol Life Sci 69(20):3429–3456. doi: 10.1007/s00018-012-1122-2 CrossRefPubMedGoogle Scholar
  9. 9.
    Xiang B, Wang W, Li W, Li X, Li G (2012) Differential expression of oxidored nitro domain containing protein 1 (NOR1), in mouse tissues and in normal and cancerous human tissues. Gene 493(1):18–26. doi: 10.1016/j.gene.2011.11.039 CrossRefPubMedGoogle Scholar
  10. 10.
    Xiang B, Yi M, Li W, Wang W, Zheng P, Li X, Li G (2014) Expression of oxidored nitro domain-containing protein 1(NOR1) impairs nasopharyngeal carcinoma cells adaptation to hypoxia and inhibits PDK1 expression. Mol Cell Biochem 393(1–2):293–300. doi: 10.1007/s11010-014-2072-9 CrossRefPubMedGoogle Scholar
  11. 11.
    Wang W, Yi M, Chen S, Li J, Li G, Yang J, Zheng P, Zhang H, Xiong W, McCarthy JB, Li G, Li X, Xiang B (2016) Significance of the NOR1-FOXA1/HDAC2-Slug regulatory network in epithelial-mesenchymal transition of tumor cells. Oncotarget 7(13):16745–16759. doi: 10.18632/oncotarget.7778 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wang J, Guo LP, Chen LZ, Zeng YX, Lu SH (2007) Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line. Cancer Res 67(8):3716–3724. doi: 10.1158/0008-5472.CAN-06-4343 CrossRefPubMedGoogle Scholar
  13. 13.
    Wang WJ, Wu SP, Liu JB, Shi YS, Huang X, Zhang QB, Yao KT (2013) MYC regulation of CHK1 and CHK2 promotes radioresistance in a stem cell-like population of nasopharyngeal carcinoma cells. Cancer Res 73(3):1219–1231. doi: 10.1158/0008-5472.CAN-12-1408 CrossRefPubMedGoogle Scholar
  14. 14.
    Wang W, Li X, Zhang W, Li W, Yi M, Yang J, Zeng Z, Colvin Wanshura LE, McCarthy JB, Fan S, Zheng P, Chen S, Xiang B, Li G (2014) Oxidored-nitro domain containing protein 1 (NOR1) expression suppresses slug/vimentin but not snail in nasopharyngeal carcinoma: inhibition of EMT in vitro and in vivo in mice. Cancer Lett 348(1–2):109–118. doi: 10.1016/j.canlet.2014.03.005 CrossRefPubMedGoogle Scholar
  15. 15.
    Yi M, Yang J, Li W, Li X, Xiong W, McCarthy JB, Li G, Xiang B (2017) The NOR1/OSCP1 proteins in cancer: from epigenetic silencing to functional characterization of a novel tumor suppressor. J Cancer 8(4):626–635. doi: 10.7150/jca.17579 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Dauphin M, Barbe C, Lemaire S, Nawrocki-Raby B, Lagonotte E, Delepine G, Birembaut P, Gilles C, Polette M (2013) Vimentin expression predicts the occurrence of metastases in non small cell lung carcinomas. Lung Cancer 81(1):117–122. doi: 10.1016/j.lungcan.2013.03.011 CrossRefPubMedGoogle Scholar
  17. 17.
    Cheng Y, Zhou Y, Jiang W, Yang X, Zhu J, Feng D, Wei Y, Li M, Yao F, Hu W, Xiao W, Ling B (2012) Significance of E-cadherin, beta-catenin, and vimentin expression as postoperative prognosis indicators in cervical squamous cell carcinoma. Hum Pathol 43(8):1213–1220. doi: 10.1016/j.humpath.2011.08.025 CrossRefPubMedGoogle Scholar
  18. 18.
    Zelenko Z, Gallagher EJ, Tobin-Hess A, Belardi V, Rostoker R, Blank J, Dina Y, LeRoith D (2017) Silencing vimentin expression decreases pulmonary metastases in a pre-diabetic mouse model of mammary tumor progression. Oncogene 36(10):1394–1403. doi: 10.1038/onc.2016.305 CrossRefPubMedGoogle Scholar
  19. 19.
    Li XH, Chang H, Xu BQ, Tao YL, Gao J, Chen C, Qu C, Zhou S, Liu SR, Wang XH, Zhang WW, Yang X, Zhou SL, Xia YF (2017) An inflammatory biomarker-based nomogram to predict prognosis of patients with nasopharyngeal carcinoma: an analysis of a prospective study. Cancer Med 6(1):310–319. doi: 10.1002/cam4.947 CrossRefPubMedGoogle Scholar
  20. 20.
    Chang ET, Adami HO (2006) The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev 15(10):1765–1777. doi: 10.1158/1055-9965.EPI-06-0353 CrossRefPubMedGoogle Scholar
  21. 21.
    Larsen JE, Nathan V, Osborne JK, Farrow RK, Deb D, Sullivan JP, Dospoy PD, Augustyn A, Hight SK, Sato M, Girard L, Behrens C, Wistuba II, Gazdar AF, Hayward NK, Minna JD (2016) ZEB1 drives epithelial-to-mesenchymal transition in lung cancer. J Clin Invest 126(9):3219–3235. doi: 10.1172/JCI76725 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Dmello C, Sawant S, Alam H, Gangadaran P, Mogre S, Tiwari R, D’Souza Z, Narkar M, Thorat R, Patil K, Chaukar D, Kane S, Vaidya M (2017) Vimentin regulates differentiation switch via modulation of keratin 14 levels and their expression together correlates with poor prognosis in oral cancer patients. PLoS ONE 12(2):e0172559. doi: 10.1371/journal.pone.0172559 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Jiu Y, Peranen J, Schaible N, Cheng F, Eriksson JE, Krishnan R, Lappalainen P (2017) Vimentin intermediate filaments control actin stress fiber assembly through GEF-H1 and RhoA. J Cell Sci 130(5):892–902. doi: 10.1242/jcs.196881 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Woodham EF, Paul NR, Tyrrell B, Spence HJ, Swaminathan K, Scribner MR, Giampazolias E, Hedley A, Clark W, Kage F, Marston DJ, Hahn KM, Tait SW, Larue L, Brakebusch CH, Insall RH, Machesky LM (2017) Coordination by Cdc42 of Actin, Contractility, and Adhesion for Melanoblast Movement in Mouse Skin. Curr Biol 27(5):624–637. doi: 10.1016/j.cub.2017.01.033 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Riechelmann R, Grothey A (2017) Antiangiogenic therapy for refractory colorectal cancer: current options and future strategies. Ther Adv Med Oncol 9(2):106–126. doi: 10.1177/1758834016676703 CrossRefPubMedGoogle Scholar
  26. 26.
    Ribatti D (2017) Epithelial-mesenchymal transition in morphogenesis, cancer progression and angiogenesis. Exp Cell Res 353(1):1–5. doi: 10.1016/j.yexcr.2017.02.041 CrossRefPubMedGoogle Scholar
  27. 27.
    Corominas D, Vollmer I, Paredes P (2017) Pulmonary Tumor Embolism due to Cardiac Metastasis of Lung Cancer. Arch Bronconeumol. doi: 10.1016/j.arbres.2017.01.008 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Wei Wang
    • 1
    • 2
  • Mei Yi
    • 3
  • Renya Zhang
    • 2
  • Junjun Li
    • 1
    • 4
  • Shengnan Chen
    • 1
    • 4
  • Jing Cai
    • 1
    • 4
  • Zhaoyang Zeng
    • 1
    • 4
  • Xiaoling Li
    • 1
    • 4
  • Wei Xiong
    • 1
    • 4
  • Li Wang
    • 5
  • Guiyuan Li
    • 1
    • 4
  • Bo Xiang
    • 1
    • 4
  1. 1.The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya HospitalCentral South UniversityChangshaChina
  2. 2.Department of PathologyAffiliated Hospital of Jining Medical UniversityJiningChina
  3. 3.Department of Dermatology, Xiangya HospitalCentral South UniversityChangshaChina
  4. 4.Cancer Research Institute, Xiangya School of MedicineCentral South UniversityChangshaChina
  5. 5.Department of Thoracic SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina

Personalised recommendations