Skip to main content

Advertisement

Log in

HIF1A overexpression using cell-penetrating DNA-binding protein induces angiogenesis in vitro and in vivo

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hypoxia-inducible factor-1 alpha (HIF1A) is an important transcription factor for angiogenesis. Recent studies have used the protein transduction domain (PTD) to deliver genes, but the PTD has not been used to induce the expression of HIF1A. This study aimed at using a novel PTD (Hph-1-GAL4; ARVRRRGPRR) to overexpress the HIF1A and identify the effects on angiogenesis in vitro and in vivo. Overexpression of HIF1A was induced using Hph-1-GAL4 in human umbilical vein/vascular endothelium cells (HUVEC). The expression levels of genes were analyzed by the quantitative real-time polymerase chain reaction (qPCR) after 2 and 4 days, respectively. An in vitro tube formation was performed using Diff-Quik staining. HIF1A and Hph-1-GAL4 were injected subcutaneously into the ventral area of each 5-week-old mouse. All of the plugs were retrieved after 1 week, and the gene expression levels were evaluated by qPCR. Each Matrigel plug was evaluated using the hemoglobin assay and hematoxylin and eosin (HE) staining. The expression levels of HIF1A and HIF1A target genes were significantly higher in HIF1A-transfected HUVEC than in control HUVEC in vitro. In the in vivo Matrigel plug assay, the amount of hemoglobin was significantly higher in the HIF1A-treatment group than in the PBS-treatment group. Blood vessels were identified in the HIF1A-treatment group. The expression levels of HIF1A, vascular endothelial growth factor (Vegf), and Cd31 were significantly higher in the HIF1A-treatment group than in the PBS-treatment group. These findings suggest that using Hph-1-G4D to overexpress HIF1A might be useful for transferring genes and regenerating tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Robbins PD, Ghivizzani SC (1998) Viral vectors for gene therapy. Pharmacol Ther 80:35–47

    Article  CAS  PubMed  Google Scholar 

  2. Gao X, Huang L (1995) Cationic liposome-mediated gene transfer. Gene Ther 2:710–722

    CAS  PubMed  Google Scholar 

  3. Fink DJ, Glorioso JC (1997) Engineering herpes simplex virus vectors for gene transfer to neurons. Nat Med 3:357–359

    Article  CAS  PubMed  Google Scholar 

  4. Fink DJ, Glorioso JC (1997) Herpes simplex virus-based vectors: problems and some solutions. Adv Neurol 72:149–156

    CAS  PubMed  Google Scholar 

  5. Liu F, Yang J, Huang L, Liu D (1996) New cationic lipid formulations for gene transfer. Pharm Res 13:1856–1860

    Article  CAS  PubMed  Google Scholar 

  6. Lundstrom K (2003) Latest development in viral vectors for gene therapy. Trends Biotechnol 21:117–122. doi:10.1016/s0167-7799(02)00042-2

    Article  CAS  PubMed  Google Scholar 

  7. Ledley FD (1995) Nonviral gene therapy: the promise of genes as pharmaceutical products. Hum Gene Ther 6:1129–1144. doi:10.1089/hum.1995.6.9-1129

    Article  CAS  PubMed  Google Scholar 

  8. Stone D (2010) Novel viral vector systems for gene therapy. Viruses 2:1002–1007. doi:10.3390/v2041002

    Article  PubMed  PubMed Central  Google Scholar 

  9. Torchilin VP, Levchenko TS, Rammohan R, Volodina N, Papahadjopoulos-Sternberg B, D’Souza GG (2003) Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes. Proc Natl Acad Sci USA 100:1972–1977. doi:10.1073/pnas.0435906100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lukashev AN, Zamyatnin AA Jr (2016) Viral vectors for gene therapy: current state and clinical perspectives. Biochemistry (Mosc) 81:700–708. doi:10.1134/s0006297916070063

    Article  CAS  Google Scholar 

  11. Nagahara H, Vocero-Akbani AM, Snyder EL, Ho A, Latham DG, Lissy NA, Becker-Hapak M, Ezhevsky SA, Dowdy SF (1998) Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat Med 4:1449–1452. doi:10.1038/4042

    Article  CAS  PubMed  Google Scholar 

  12. Veldhoen M, Magee AI, Penha-Goncalves MN, Stockinger B (2005) Transduction of naive CD4 T cells with kinase-deficient Lck-HIV-Tat fusion protein dampens T cell activation and provokes a switch to regulatory function. Eur J Immunol 35:207–216. doi:10.1002/eji.200425542

    Article  CAS  PubMed  Google Scholar 

  13. Harreither E, Rydberg HA, Amand HL, Jadhav V, Fliedl L, Benda C, Esteban MA, Pei D, Borth N, Grillari-Voglauer R, Hommerding O, Edenhofer F, Norden B, Grillari J (2014) Characterization of a novel cell penetrating peptide derived from human Oct4. Cell Regen (Lond) 3:2. doi:10.1186/2045-9769-3-2

    Google Scholar 

  14. De Coupade C, Fittipaldi A, Chagnas V, Michel M, Carlier S, Tasciotti E, Darmon A, Ravel D, Kearsey J, Giacca M, Cailler F (2005) Novel human-derived cell-penetrating peptides for specific subcellular delivery of therapeutic biomolecules. Biochem J 390:407–418. doi:10.1042/bj20050401

    Article  PubMed  PubMed Central  Google Scholar 

  15. Oehlke J, Scheller A, Wiesner B, Krause E, Beyermann M, Klauschenz E, Melzig M, Bienert M (1998) Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim Biophys Acta 1414:127–139

    Article  CAS  PubMed  Google Scholar 

  16. Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB (2000) The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci USA 97:13003–13008. doi:10.1073/pnas.97.24.13003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang C, Tang N, Liu X, Liang W, Xu W, Torchilin VP (2006) siRNA-containing liposomes modified with polyarginine effectively silence the targeted gene. J Control Release 112:229–239. doi:10.1016/j.jconrel.2006.01.022

    Article  CAS  PubMed  Google Scholar 

  18. Marks JR, Placone J, Hristova K, Wimley WC (2011) Spontaneous membrane-translocating peptides by orthogonal high-throughput screening. J Am Chem Soc 133:8995–9004. doi:10.1021/ja2017416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. He J, Kauffman WB, Fuselier T, Naveen SK, Voss TG, Hristova K, Wimley WC (2013) Direct cytosolic delivery of polar cargo to cells by spontaneous membrane-translocating peptides. J Biol Chem 288:29974–29986. doi:10.1074/jbc.M113.488312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wei Y, Li C, Zhang L, Xu X (2014) Design of novel cell penetrating peptides for the delivery of trehalose into mammalian cells. Biochim Biophys Acta 1838:1911–1920. doi:10.1016/j.bbamem.2014.02.011

    Article  CAS  PubMed  Google Scholar 

  21. Choi JM, Ahn MH, Chae WJ, Jung YG, Park JC, Song HM, Kim YE, Shin JA, Park CS, Park JW, Park TK, Lee JH, Seo BF, Kim KD, Kim ES, Lee DH, Lee SK, Lee SK (2006) Intranasal delivery of the cytoplasmic domain of CTLA-4 using a novel protein transduction domain prevents allergic inflammation. Nat Med 12:574–579. doi:10.1038/nm1385

    Article  CAS  PubMed  Google Scholar 

  22. Rothbard JB, Garlington S, Lin Q, Kirschberg T, Kreider E, McGrane PL, Wender PA, Khavari PA (2000) Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat Med 6:1253–1257. doi:10.1038/81359

    Article  CAS  PubMed  Google Scholar 

  23. Wadia JS, Dowdy SF (2002) Protein transduction technology. Curr Opin Biotechnol 13:52–56

    Article  CAS  PubMed  Google Scholar 

  24. Fominaya J, Uherek C, Wels W (1998) A chimeric fusion protein containing transforming growth factor-alpha mediates gene transfer via binding to the EGF receptor. Gene Ther 5:521–530. doi:10.1038/sj.gt.3300614

    Article  CAS  PubMed  Google Scholar 

  25. Paul RW, Weisser KE, Loomis A, Sloane DL, LaFoe D, Atkinson EM, Overell RW (1997) Gene transfer using a novel fusion protein, GAL4/invasin. Hum Gene Ther 8:1253–1262. doi:10.1089/hum.1997.8.10-1253

    Article  CAS  PubMed  Google Scholar 

  26. Fominaya J, Wels W (1996) Target cell-specific DNA transfer mediated by a chimeric multidomain protein. Novel non-viral gene delivery system. J Biol Chem 271:10560–10568

    Article  CAS  PubMed  Google Scholar 

  27. Kim ES, Yang SW, Hong DK, Kim WT, Kim HG, Lee SK (2010) Cell-penetrating DNA-binding protein as a safe and efficient naked DNA delivery carrier in vitro and in vivo. Biochem Biophys Res Commun 392:9–15. doi:10.1016/j.bbrc.2009.12.135

    Article  CAS  PubMed  Google Scholar 

  28. Semenza GL (1998) Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev 8:588–594

    Article  CAS  PubMed  Google Scholar 

  29. Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92:5510–5514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Laine L, Takeuchi K, Tarnawski A (2008) Gastric mucosal defense and cytoprotection: bench to bedside. Gastroenterology 135:41–60. doi:10.1053/j.gastro.2008.05.030

    Article  CAS  PubMed  Google Scholar 

  31. Tarnawski AS (2005) Cellular and molecular mechanisms of gastrointestinal ulcer healing. Dig Dis Sci 50(Suppl 1):S24–S33. doi:10.1007/s10620-005-2803-6

    Article  CAS  PubMed  Google Scholar 

  32. Ahluwalia A, Tarnawski AS (2012) Critical role of hypoxia sensor–HIF-1alpha in VEGF gene activation. Implications for angiogenesis and tissue injury healing. Curr Med Chem 19:90–97

    Article  CAS  PubMed  Google Scholar 

  33. Razban V, Lotfi AS, Soleimani M, Ahmadi H, Massumi M, Khajeh S, Ghaedi M, Arjmand S, Najavand S, Khoshdel A (2012) HIF-1alpha overexpression induces angiogenesis in mesenchymal stem cells. Biores Open Access 1:174–183. doi:10.1089/biores.2012.9905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zou D, Zhang Z, He J, Zhang K, Ye D, Han W, Zhou J, Wang Y, Li Q, Liu X, Zhang X, Wang S, Hu J, Zhu C, Zhang W, zhou Y, Fu H, Huang Y, Jiang X (2012) Blood vessel formation in the tissue-engineered bone with the constitutively active form of HIF-1alpha mediated BMSCs. Biomaterials 33:2097–2108. doi:10.1016/j.biomaterials.2011.11.053

  35. Lampert FM, Kutscher C, Stark GB, Finkenzeller G (2016) Overexpression of Hif-1alpha in mesenchymal stem cells affects cell-autonomous angiogenic and osteogenic parameters. J Cell Biochem 117:760–768. doi:10.1002/jcb.25361

    Article  CAS  PubMed  Google Scholar 

  36. Kutscher C, Lampert FM, Kunze M, Markfeld-Erol F, Stark GB, Finkenzeller G (2016) Overexpression of hypoxia-inducible factor-1 alpha improves vasculogenesis-related functions of endothelial progenitor cells. Microvasc Res 105:85–92. doi:10.1016/j.mvr.2016.01.006

    Article  PubMed  Google Scholar 

  37. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  38. He H, Ye J, Liu E, Liang Q, Liu Q, Yang VC (2014) Low molecular weight protamine (LMWP): a nontoxic protamine substitute and an effective cell-penetrating peptide. J Control Release 193:63–73. doi:10.1016/j.jconrel.2014.05.056

    Article  CAS  PubMed  Google Scholar 

  39. Ramsey JD, Flynn NH (2015) Cell-penetrating peptides transport therapeutics into cells. Pharmacol Ther 154:78–86. doi:10.1016/j.pharmthera.2015.07.003

    Article  CAS  PubMed  Google Scholar 

  40. Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414. doi:10.1038/74464

    Article  CAS  PubMed  Google Scholar 

  41. Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O (2015) Pericytes at the intersection between tissue regeneration and pathology. Clin Sci (Lond) 128:81–93. doi:10.1042/cs20140278

    Article  CAS  Google Scholar 

  42. Birbrair A, Zhang T, Wang ZM, Messi ML, Olson JD, Mintz A, Delbono O (2014) Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 307:C25–C38. doi:10.1152/ajpcell.00084.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gavin TP, Robinson CB, Yeager RC, England JA, Nifong LW, Hickner RC (2004) Angiogenic growth factor response to acute systemic exercise in human skeletal muscle. J Appl Physiol (1985) 96:19–24. doi:10.1152/japplphysiol.00748.2003

    Article  CAS  Google Scholar 

  44. Haas TL, Milkiewicz M, Davis SJ, Zhou AL, Egginton S, Brown MD, Madri JA, Hudlicka O (2000) Matrix metalloproteinase activity is required for activity-induced angiogenesis in rat skeletal muscle. Am J Physiol Heart Circ Physiol 279:H1540–H1547

    Article  CAS  PubMed  Google Scholar 

  45. Khurana R, Simons M (2003) Insights from angiogenesis trials using fibroblast growth factor for advanced arteriosclerotic disease. Trends Cardiovasc Med 13:116–122

    Article  CAS  PubMed  Google Scholar 

  46. Kraus RM, Stallings HW 3rd, Yeager RC, Gavin TP (2004) Circulating plasma VEGF response to exercise in sedentary and endurance-trained men. J Appl Physiol (1985) 96:1445–1450. doi:10.1152/japplphysiol.01031.2003

    Article  CAS  Google Scholar 

  47. Lloyd PG, Prior BM, Yang HT, Terjung RL (2003) Angiogenic growth factor expression in rat skeletal muscle in response to exercise training. Am J Physiol Heart Circ Physiol 284:H1668–H1678. doi:10.1152/ajpheart.00743.2002

    Article  CAS  PubMed  Google Scholar 

  48. Prior BM, Yang HT, Terjung RL (2004) What makes vessels grow with exercise training? J Appl Physiol (1985) 97:1119–1128. doi:10.1152/japplphysiol.00035.2004

    Article  Google Scholar 

  49. Thurston G (2003) Role of Angiopoietins and Tie receptor tyrosine kinases in angiogenesis and lymphangiogenesis. Cell Tissue Res 314:61–68. doi:10.1007/s00441-003-0749-6

    Article  CAS  PubMed  Google Scholar 

  50. Cucina A, Borrelli V, Randone B, Coluccia P, Sapienza P, Cavallaro A (2003) Vascular endothelial growth factor increases the migration and proliferation of smooth muscle cells through the mediation of growth factors released by endothelial cells. J Surg Res 109:16–23

    Article  CAS  PubMed  Google Scholar 

  51. Stavri GT, Zachary IC, Baskerville PA, Martin JF, Erusalimsky JD (1995) Basic fibroblast growth factor upregulates the expression of vascular endothelial growth factor in vascular smooth muscle cells. Synergistic interaction with hypoxia. Circulation 92:11–14

    Article  CAS  PubMed  Google Scholar 

  52. Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845. doi:10.1038/359843a0

    Article  CAS  PubMed  Google Scholar 

  53. Elson DA, Thurston G, Huang LE, Ginzinger DG, McDonald DM, Johnson RS, Arbeit JM (2001) Induction of hypervascularity without leakage or inflammation in transgenic mice overexpressing hypoxia-inducible factor-1alpha. Genes Dev 15:2520–2532. doi:10.1101/gad.914801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zou D, Zhang Z, Ye D, Tang A, Deng L, Han W, Zhao J, Wang S, Zhang W, Zhu C, Zhou J, He J, Wang Y, Xu F, Huang Y, Jiang X (2011) Repair of critical-sized rat calvarial defects using genetically engineered bone marrow-derived mesenchymal stem cells overexpressing hypoxia-inducible factor-1alpha. Stem Cells 29:1380–1390. doi:10.1002/stem.693

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science, ICT& Future Planning) (NRF-2014R1A2A1A10052466, NRF-2015037075 and NRF-2017R1A2B2002537)

Funding

All authors have no financial and personal relationships that could influence their work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang-Kyou Lee or Je Seon Song.

Additional information

Mijeong Jeon and Yooseok Shin have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 99 kb)

Supplementary material 2 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, M., Shin, Y., Jung, J. et al. HIF1A overexpression using cell-penetrating DNA-binding protein induces angiogenesis in vitro and in vivo. Mol Cell Biochem 437, 99–107 (2018). https://doi.org/10.1007/s11010-017-3098-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3098-6

Keywords

Navigation