Skip to main content
Log in

Partial p53-dependence of anisomycin-induced apoptosis in PC12 cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The bacterial antibiotic anisomycin is known to induce apoptosis by activating several mitogen-activated protein kinases and by inhibiting protein synthesis. In this study, the influence of p53 protein on the apoptosis-inducing effect of anisomycin was investigated. The effect of protein synthesis-inhibiting concentration of anisomycin on apoptotic events was analyzed using Western blot, DNA fragmentation, and cell viability assays in wild-type PC12 and in mutant p53 protein expressing p143p53PC12 cells. Anisomycin stimulated the main apoptotic pathways in both cell lines, but p143p53PC12 cells showed lower sensitivity to the drug than their wild-type counterparts. Anisomycin caused the activation of the main stress kinases, phosphorylation of the p53 protein and the eukaryotic initiation factor eIF2α, proteolytic cleavage of protein kinase R, Bid, caspase-9 and -3. Furthermore, anisomycin treatment led to the activation of TRAIL and caspase-8, two proteins involved in the extrinsic apoptotic pathway. All these changes were stronger and more sustained in wtPC12 cells. In the presence of the dominant inhibitory p53 protein, p53- dependent genes involved in the regulation of apoptosis may be less transcribed and this can lead to the decrease of apoptotic processes in p143p53PC12 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sobin BA, Tanner FW (1954) Anisomycin, a new anti-protozoan antibiotic. J Am Chem Soc 76:4053

    Article  CAS  Google Scholar 

  2. Barbacid M, Vazquez D (1974) (3H)a nisomycin binding to eukaryotic ribosomes. J Mol Biol 84:603–623

    Article  CAS  PubMed  Google Scholar 

  3. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326–1331

    Article  CAS  PubMed  Google Scholar 

  4. Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB J 9:726–735

    CAS  PubMed  Google Scholar 

  5. Wada T, Penninger JM (2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23:2838–2849. doi:10.1038/sj.onc.1207556

    Article  CAS  PubMed  Google Scholar 

  6. Shifrin VI, Anderson P (1999) Trichothecene mycotoxins trigger a ribotoxic stress response that activates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase and induces apoptosis. J Biol Chem 274:13985–13992

    Article  CAS  PubMed  Google Scholar 

  7. Törőcsik B, Szeberényi J (2000) Anisomycin affects both pro- and antiapoptotic mechanisms in PC12 cells. Biochem Biophys Res Commun 278:550–556. doi:10.1006/bbrc.2000.3836

    Article  PubMed  Google Scholar 

  8. Törőcsik B, Szeberényi J (2000) Anisomycin uses multiple mechanisms to stimulate mitogen-activated protein kinases and gene expression and to inhibit neuronal differentiation in PC12 phaeochromocytoma cells. Eur J Neurosci 12:527–532

    Article  PubMed  Google Scholar 

  9. Stadheim TA, Kucera GL (2002) c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is required for mitoxantrone- and anisomycin-induced apoptosis in HL-60 cells. Leuk Res 26:55–65

    Article  CAS  PubMed  Google Scholar 

  10. Lee KH, Nishimura S, Matsunaga S, Fusetani N, Ichijo H, Horinouchi S, Yoshida M (2006) Induction of a ribotoxic stress response that stimulates stress-activated protein kinases by 13-deoxytedanolide, an antitumor marine macrolide. Biosci Biotechnol Biochem 70:161–171. doi:10.1271/bbb.70.161

    Article  CAS  PubMed  Google Scholar 

  11. Hori T, Kondo T, Tabuchi Y, Takasaki I, Zhao QL, Kanamori M, Yasuda T, Kimura T (2008) Molecular mechanism of apoptosis and gene expressions in human lymphoma U937 cells treated with anisomycin. Chem Biol Interact 172:125–140. doi:10.1016/j.cbi.2007.12.003

    Article  CAS  PubMed  Google Scholar 

  12. Croons V, Martinet W, Herman AG, Timmermans JP, De Meyer GR (2009) The protein synthesis inhibitor anisomycin induces macrophage apoptosis in rabbit atherosclerotic plaques through p38 mitogen-activated protein kinase. J Pharmacol Exp Ther 329:856–864. doi:10.1124/jpet.108.149948

    Article  CAS  PubMed  Google Scholar 

  13. Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73:2424–2428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hazzalin CA, Le Panse R, Cano E, Mahadevan LC (1998) Anisomycin selectively desensitizes signalling components involved in stress kinase activation and fos and jun induction. Mol Cell Biol 18:1844–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rosser EM, Morton S, Ashton KS, Cohen P, Hulme AN (2004) Synthetic anisomycin analogues activating the JNK/SAPK1 and p38/SAPK2 pathways. Org Biomol Chem 2:142–149. doi:10.1039/b311242j

    Article  CAS  PubMed  Google Scholar 

  16. Haupt S, Berger M, Goldberg Z, Haupt Y (2003) Apoptosis - the p53 network. J Cell Sci 116:4077–4085. doi:10.1242/jcs.00739

    Article  CAS  PubMed  Google Scholar 

  17. Hollstein M, Hainaut P (2010) Massively regulated genes: the example of TP53. J Pathol 220:164–173. doi:10.1002/path.2637

    CAS  PubMed  Google Scholar 

  18. Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331

    Article  CAS  PubMed  Google Scholar 

  19. Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137:413–431. doi:10.1016/j.cell.2009.04.037

    Article  CAS  PubMed  Google Scholar 

  20. Bai L, Zhu WG (2006) p53: structure, function and therapeutic applications. J Cancer Mol 2:141–153

    CAS  Google Scholar 

  21. Böhlig L, Rother K (2011) One function–multiple mechanisms: the manifold activities of p53 as a transcriptional repressor. J Biomed Biotechnol 2011:464916. doi:10.1155/2011/464916

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lindenboim L, Borner C, Stein R (2011) Nuclear proteins acting on mitochondria. Biochim Biophys Acta 1813:584–596. doi:10.1016/j.bbamcr.2010.11.016

    Article  CAS  PubMed  Google Scholar 

  23. Lavin MF, Gueven N (2006) The complexity of p53 stabilization and activation. Cell Death Differ 13:941–950. doi:10.1038/sj.cdd.4401925

    Article  CAS  PubMed  Google Scholar 

  24. Maclaine NJ, Hupp TR (2009) The regulation of p53 by phosphorylation: a model for how distinct signals integrate into the p53 pathway. Aging (Albany NY) 1:490–502. doi:10.18632/aging.100047

    Article  CAS  Google Scholar 

  25. Smeenk L, van Heeringen SJ, Koeppel M, Gilbert B, Janssen-Megens E, Stunnenberg HG, Lohrum M (2011) Role of p53 serine 46 in p53 target gene regulation. PLoS One 6:e17574. doi:10.1371/journal.pone.0017574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Menendez D, Inga A, Resnick MA (2009) The expanding universe of p53 targets. Nat Rev Cancer 9:724–737. doi:10.1038/nrc2730

    Article  CAS  PubMed  Google Scholar 

  27. Mirzayans R, Andrais B, Scott A, Murray D (2012) New insights into p53 signaling and cancer cell response to DNA damage: implications for cancer therapy. J Biomed Biotechnol 2012:170325. doi:10.1155/2012/170325

    Article  PubMed  PubMed Central  Google Scholar 

  28. Friedlander P, Haupt Y, Prives C, Oren M (1996) A mutant p53 that discriminates between p53-responsive genes cannot induce apoptosis. Mol Cell Biol 16:4961–4971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fábián Z, Vecsernyés M, Pap M, Szeberényi J (2006) The effects of a mutant p53 protein on the proliferation and differentiation of PC12 rat phaeochromocytoma cells. J Cell Biochem 99:1431–1441. doi:10.1002/jcb.21019

    Article  PubMed  Google Scholar 

  30. Yao R, Cooper GM (1995) Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 267:2003–2006

    Article  CAS  PubMed  Google Scholar 

  31. Varga J, Bátor J, Péter M, Árvai Z, Pap M, Sétáló G, Szeberényi J (2014) The role of the p53 protein in nitrosative stress-induced apoptosis of PC12 rat pheochromocytoma cells. Cell Tissue Res 358:65–74. doi:10.1007/s00441-014-1932-7

    Article  CAS  PubMed  Google Scholar 

  32. Kardalinou E, Zhelev N, Hazzalin CA, Mahadevan LC (1994) Anisomycin and rapamycin define an area upstream of p70/85S6k containing a bifurcation to histone H3-HMG-like protein phosphorylation and c-fos-c-jun induction. Mol Cell Biol 14:1066–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bébien M, Salinas S, Becamel C, Richard V, Linares L, Hipskind RA (2003) Immediate-early gene induction by the stresses anisomycin and arsenite in human osteosarcoma cells involves MAPK cascade signaling to Elk-1, CREB and SRF. Oncogene 22:1836–1847. doi:10.1038/sj.onc.1206334

    Article  PubMed  Google Scholar 

  34. Tsujimoto Y (1998) Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes Cells 3:697–707

    Article  CAS  PubMed  Google Scholar 

  35. Tsujimoto Y, Shimizu S (2000) Bcl-2 family: life-or-death switch. FEBS Lett 466:6–10

    Article  CAS  PubMed  Google Scholar 

  36. Harris CA, Johnson EM (2001) BH3-only Bcl-2 family members are coordinately regulated by the JNK pathway and require Bax to induce apoptosis in neurons. J Biol Chem 276:37754–37760. doi:10.1074/jbc.M104073200

    CAS  PubMed  Google Scholar 

  37. Ley R, Ewings KE, Hadfield K, Cook SJ (2005) Regulatory phosphorylation of Bim: sorting out the ERK from the JNK. Cell Death Differ 12:1008–1014. doi:10.1038/sj.cdd.4401688

    Article  CAS  PubMed  Google Scholar 

  38. Abayasiriwardana KS, Barbone D, Kim KU, Vivo C, Lee KK, Dansen TB, Hunt AE, Evan GI, Broaddus VC (2007) Malignant mesothelioma cells are rapidly sensitized to TRAIL-induced apoptosis by low-dose anisomycin via Bim. Mol Cancer Ther 6:2766–2776. doi:10.1158/1535-7163.MCT-07-0278

    Article  CAS  PubMed  Google Scholar 

  39. Wakeyama H, Akiyama T, Takahashi K, Amano H, Kadono Y, Nakamura M, Oshima Y, Itabe H, Nakayama KI, Nakayama K, Nakamura K, Tanaka S (2007) Negative feedback loop in the Bim-caspase-3 axis regulating apoptosis and activity of osteoclasts. J Bone Miner Res 22:1631–1639. doi:10.1359/jbmr.070619

    Article  CAS  PubMed  Google Scholar 

  40. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A (1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 271:12687–12690

    Article  CAS  PubMed  Google Scholar 

  41. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, Blackie C, Chang L, McMurtrey AE, Hebert A, DeForge L, Koumenis IL, Lewis D, Harris L, Bussiere J, Koeppen H, Shahrokh Z, Schwall RH (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Investig 104:155–162. doi:10.1172/JCI6926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Takizawa T, Tatematsu C, Nakanishi Y (2002) Double-stranded RNA-activated protein kinase interacts with apoptosis signal-regulating kinase 1. Implications for apoptosis signaling pathways. Eur J Biochem 269:6126–6132

    Article  CAS  PubMed  Google Scholar 

  43. Liu WM, Chu WM, Choudary PV, Schmid CW (1995) Cell stress and translational inhibitors transiently increase the abundance of mammalian SINE transcripts. Nucl Acids Res 23:1758–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chu WM, Ballard R, Carpick BW, Williams BR, Schmid CW (1998) Potential Alu function: regulation of the activity of double-stranded RNA-activated kinase PKR. Mol Cell Biol 18:58–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou HR, Lau AS, Pestka JJ (2003) Role of double-stranded RNA-activated protein kinase R (PKR) in deoxynivalenol-induced ribotoxic stress response. Toxicol Sci 74:335–344. doi:10.1093/toxsci/kfg148

    Article  CAS  PubMed  Google Scholar 

  46. Kalai M, Suin V, Festjens N, Meeus A, Bernis A, Wang XM, Saelens X, Vandenabeele P (2007) The caspase-generated fragments of PKR cooperate to activate full-length PKR and inhibit translation. Cell Death Differ 14:1050–1059. doi:10.1038/sj.cdd.4402110

    CAS  PubMed  Google Scholar 

  47. Pap M, Szeberényi J (2008) Involvement of proteolytic activation of protein kinase R in the apoptosis of PC12 pheochromocytoma cells. Cell Mol Neurobiol 28:443–456. doi:10.1007/s10571-007-9245-y

    Article  CAS  PubMed  Google Scholar 

  48. Dhanasekaran DN, Reddy EP (2008) JNK signaling in apoptosis. Oncogene 27:6245–6251. doi:10.1038/onc.2008.301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. He K, Zhou HR, Pestka JJ (2012) Mechanisms for ribotoxin-induced ribosomal RNA cleavage. Toxicol Appl Pharmacol 265:10–18. doi:10.1016/j.taap.2012.09.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sah NK, Munshi A, Kurland JF, McDonnell TJ, Su B, Meyn RE (2003) Translation inhibitors sensitize prostate cancer cells to apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) by activating c-Jun N-terminal kinase. J Biol Chem 278:20593–20602. doi:10.1074/jbc.M211010200

    Article  CAS  PubMed  Google Scholar 

  51. Xia S, Li Y, Rosen EM, Laterra J (2007) Ribotoxic stress sensitizes glioblastoma cells to death receptor induced apoptosis: requirements for c-Jun NH2-terminal kinase and Bim. Mol Cancer Res 5:783–792. doi:10.1158/1541-7786.MCR-06-0433

    Article  CAS  PubMed  Google Scholar 

  52. O’Connor L, Strasser A, O’Reilly LA, Hausmann G, Adams JM, Cory S, Huang DC (1998) Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J 17:384–395. doi:10.1093/emboj/17.2.384

    Article  PubMed  PubMed Central  Google Scholar 

  53. Perry ME (2010) The regulation of the p53-mediated stress response by MDM2 and MDM4. Cold Spring Harb Perspect Biol 2:a000968. doi:10.1101/cshperspect.a000968

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fuchs SY, Adler V, Buschmann T, Wu X, Ronai Z (1998) Mdm2 association with p53 targets its ubiquitination. Oncogene 17:2543–2547. doi:10.1038/sj.onc.1202200

    Article  CAS  PubMed  Google Scholar 

  55. Meek DW (1998) Multisite phosphorylation and the integration of stress signals at p53. Cell Signal 10:159–166

    Article  CAS  PubMed  Google Scholar 

  56. Meek DW (1999) Mechanisms of switching on p53: a role for covalent modification? Oncogene 18:7666–7675. doi:10.1038/sj.onc.1202951

    Article  CAS  PubMed  Google Scholar 

  57. Takimoto R, El-Deiry WS (2000) Wild-type p53 transactivates the KILLER/DR5 gene through an intronic sequence-specific DNA-binding site. Oncogene 19:1735–1743. doi:10.1038/sj.onc.1203489

    Article  CAS  PubMed  Google Scholar 

  58. Fridman JS, Lowe SW (2003) Control of apoptosis by p53. Oncogene 22:9030–9040. doi:10.1038/sj.onc.1207116

    Article  CAS  PubMed  Google Scholar 

  59. Sax JK, Fei P, Murphy ME, Bernhard E, Korsmeyer SJ, El-Deiry WS (2002) BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol 4:842–849. doi:10.1038/ncb866

    Article  CAS  PubMed  Google Scholar 

  60. Haupt Y, Rowan S, Shaulian E, Vousden KH, Oren M (1995) Induction of apoptosis in HeLa cells by trans-activation-deficient p53. Genes Dev 9:2170–2183

    Article  CAS  PubMed  Google Scholar 

  61. Nelson V, Davis GE, Maxwell SA (2001) A putative protein inhibitor of activated STAT (PIASy) interacts with p53 and inhibits p53-mediated transactivation but not apoptosis. Apoptosis 6:221–234

    Article  CAS  PubMed  Google Scholar 

  62. Vaseva AV, Marchenko ND, Moll UM (2009) The transcription-independent mitochondrial p53 program is a major contributor to nutlin-induced apoptosis in tumor cells. Cell Cycle 8:1711–1719. doi:10.4161/cc.8.11.8596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ko LJ, Prives C (1996) p53: puzzle and paradigm. Genes Dev 10:1054–1072

    Article  CAS  PubMed  Google Scholar 

  64. Freed-Pastor WA, Prives C (2012) Mutant p53: one name, many proteins. Genes Dev 26:1268–1286. doi:10.1101/gad.190678.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Harms K, Nozell S, Chen X (2004) The common and distinct target genes of the p53 family transcription factors. Cell Mol Life Sci 61:822–842. doi:10.1007/s00018-003-3304-4

    Article  CAS  PubMed  Google Scholar 

  66. Laptenko O, Prives C (2006) Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ 13:951–961. doi:10.1038/sj.cdd.4401916

    Article  CAS  PubMed  Google Scholar 

  67. Lemke J, von Karstedt S, Zinngrebe J, Walczak H (2014) Getting TRAIL back on track for cancer therapy. Cell Death Differ 21:1350–1364. doi:10.1038/cdd.2014.81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang S, El-Deiry WS (2003) TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22:8628–8633. doi:10.1038/sj.onc.1207232

    Article  CAS  PubMed  Google Scholar 

  69. Varga J, Bátor J, Nádasdi G, Árvai Z, Schipp R, Szeberényi J (2016) Partial protection of PC12 cells from cellular stress by low-dose sodium nitroprusside pre-treatment. Cell Mol Neurobiol 36:1161–1168. doi:10.1007/s10571-015-0312-5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant SROP-4.2.2/B-10/1-2010-0029. The present scientific contribution is dedicated to the 650th anniversary of the foundation of the University of Pécs, Hungary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to József Szeberényi.

Ethics declarations

Conflicts of interest

No potential conflicts of interest were disclosed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schipp, R., Varga, J., Bátor, J. et al. Partial p53-dependence of anisomycin-induced apoptosis in PC12 cells. Mol Cell Biochem 434, 41–50 (2017). https://doi.org/10.1007/s11010-017-3035-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3035-8

Keywords

Navigation