Molecular and Cellular Biochemistry

, Volume 434, Issue 1–2, pp 25–32 | Cite as

Live kinase B1 maintains CD34+CD38 AML cell proliferation and self-renewal

  • Huihan Wang
  • Xiaobin Wang
  • Na Xin
  • Lin Qi
  • Aijun Liao
  • Wei Yang
  • Zhuogang Liu
  • Chenghai Zhao


Live kinase B1 (LKB1) has been recognized as a tumor suppressor in many human cancers; however, LKB1 maintains self-renewal of hematopoietic stem cells (HSCs). The existence of leukemia stem cells (LSCs) is responsible for drug resistance and leukemia relapse. In acute myeloid leukemia (AML), CD34+CD38 fraction is the most enriched compartment for LSCs. We found that LKB1 was upregulated in CD34+CD38 AML cells. LKB1 downregulation suppressed the long-term proliferation of CD34+CD38 AML cells, induced CD34+CD38 AML cells into G2/M phase, and enhanced the sensitivity of CD34+CD38 AML cells to chemotherapy. Furthermore, LKB1 downregulation in CD34+CD38 AML cells inhibited tumor formation in NOD-SCID mice. Downregulation of LKB1 gene makes LSCs partly loose the characters as stem cells. Gene expression microarray showed that MAPK/ERK pathway was implicated in the regulation of CD34+CD38 AML cell proliferation by LKB1. Together, these findings demonstrate that LKB1 plays an important role in the maintenance of LSCs, which may be responsible for drug resistance and AML relapse.


Live kinase B1 Acute myeloid leukemia Leukemia stem cells 



Huihan Wang acknowledges grant support from the National Natural Science Foundation of China (81100376). Aijun Liao acknowledges grant support from the National Natural Science Foundation of China (81272629).


  1. 1.
    Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737CrossRefPubMedGoogle Scholar
  2. 2.
    Sarry JE, Murphy K, Perry R, Sanchez PV, Secreto A, Keefer C, Swider CR, Strzelecki AC, Cavelier C, Recher C, Mansat-De Mas V, Delabesse E, Danet-Desnoyers G, Carroll M (2011) Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rgammac-deficient mice. J Clin Invest 121:384–395CrossRefPubMedGoogle Scholar
  3. 3.
    Kikushige Y, Miyamoto T (2015) Identification of TIM-3 as a leukemic stem cell surface molecule in primary acute myeloid leukemia. Oncology 89(Suppl 1):28–32CrossRefPubMedGoogle Scholar
  4. 4.
    Pelosi E, Castelli G, Testa U (2015) Targeting LSCs through membrane antigens selectively or preferentially expressed on these cells. Blood Cells Mol Dis 55:336–346CrossRefPubMedGoogle Scholar
  5. 5.
    O’Brien JA, Rizzieri DA (2013) Leukemic stem cells: a review. Cancer Invest 31:215–220CrossRefPubMedGoogle Scholar
  6. 6.
    Marignani PA (2005) LKB1, the multitasking tumour suppressor kinase. J Clin Pathol 58:15–19CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    van Lier MG, Wagner A, Mathus-Vliegen EM, Kuipers EJ, Steyerberg EW, van Leerdam ME (2010) High cancer risk in Peutz-Jeghers syndrome: a systematic review and surveillance recommendations. Am J Gastroenterol 105:1258–1264CrossRefPubMedGoogle Scholar
  8. 8.
    Sanchez-Cespedes M (2007) A role for LKB1 gene in human cancer beyond the Peutz-Jeghers syndrome. Oncogene 26:7825–7832CrossRefPubMedGoogle Scholar
  9. 9.
    Hezel AF, Bardeesy N (2008) LKB1; linking cell structure and tumor suppression. Oncogene 27:6908–6919CrossRefPubMedGoogle Scholar
  10. 10.
    Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA, Cantley LC (2004) The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6:91–99CrossRefPubMedGoogle Scholar
  11. 11.
    Nakada D, Saunders TL, Morrison SJ (2010) Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 468:653–658CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gurumurthy S, Xie SZ, Alagesan B, Kim J, Yusuf RZ, Saez B, Tzatsos A, Ozsolak F, Milos P, Ferrari F, Park PJ, Shirihai OS, Scadden DT, Bardeesy N (2010) The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 468:659–663CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gan B, Hu J, Jiang S, Liu Y, Sahin E, Zhuang L, Fletcher-Sananikone E, Colla S, Wang YA, Chin L, Depinho RA (2010) Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 468:701–704CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Rizo A, Olthof S, Han L, Vellenga E, de Haan G, Schuringa JJ (2009) Repression of BMI1 in normal and leukemic human CD34(+) cells impairs self-renewal and induces apoptosis. Blood 114:1498–1505CrossRefPubMedGoogle Scholar
  15. 15.
    Li B, Fu J, Chen P, Ge X, Li Y, Kuiatse I, Wang H, Wang H, Zhang X, Orlowski RZ (2015) The nuclear factor (erythroid-derived 2)-like 2 and proteasome maturation protein axis mediate bortezomib resistance in multiple myeloma. J Biol Chem 290:29854–29868CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wang X, Liu H, Zhao C, Li W, Xu H, Chen Y (2016) The DEAD-box RNA helicase 51 controls non-small cell lung cancer proliferation by regulating cell cycle progression via multiple pathways. Sci Rep 6:26108CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hu Y, Li S (2016) Survival regulation of leukemia stem cells. Cell Mol Life Sci 73:1039–1050CrossRefPubMedGoogle Scholar
  18. 18.
    Reinisch A, Chan SM, Thomas D, Majeti R (2015) Biology and clinical relevance of acute myeloid leukemia stem cells. Semin Hematol 52:150–164CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhang PY, Yang YJ, Fu CM, Xiang LL, Wang Q, Li XL (2015) Pathways involved in the evolution of leukemic stem cells. Eur Rev Med Pharmacol Sci 19:1356–1363PubMedGoogle Scholar
  20. 20.
    Schepers K, Campbell TB, Passegue E (2015) Normal and leukemic stem cell niches: insights and therapeutic opportunities. Cell Stem Cell 16:254–267CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Liang J, Mills GB (2013) AMPK: a contextual oncogene or tumor suppressor? Cancer Res 73:2929–2935CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8:774–785CrossRefPubMedGoogle Scholar
  23. 23.
    Luo Z, Zang M, Guo W (2010) AMPK as a metabolic tumor suppressor: control of metabolism and cell growth. Future Oncol 6:457–470CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Shaw RJ (2009) LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiol (Oxf) 196:65–80CrossRefGoogle Scholar
  25. 25.
    Chavez-Gonzalez A, Bakhshinejad B, Pakravan K, Guzman ML, Babashah S (2017) Novel strategies for targeting leukemia stem cells: sounding the death knell for blood cancer. Cell Oncol (Dordr) 40:1–20CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Huihan Wang
    • 1
  • Xiaobin Wang
    • 3
  • Na Xin
    • 2
  • Lin Qi
    • 4
  • Aijun Liao
    • 1
  • Wei Yang
    • 1
  • Zhuogang Liu
    • 1
  • Chenghai Zhao
    • 2
  1. 1.Department of Hematology, Shengjing HospitalChina Medical UniversityShenyangChina
  2. 2.Department of Pathophysiology, College of Basic Medical ScienceChina Medical UniversityShenyangChina
  3. 3.Department of Urology, Shengjing HospitalChina Medical UniversityShenyangChina
  4. 4.Laboratory of Molecular Neuro-Oncology, Texas Children’s HospitalBaylor College of MedicineHoustonUSA

Personalised recommendations