Molecular and Cellular Biochemistry

, Volume 433, Issue 1–2, pp 79–95 | Cite as

Steroidogenic genes expressions are repressed by high levels of leptin and the JAK/STAT signaling pathway in MA-10 Leydig cells

  • David A. Landry
  • François Sormany
  • Josée Haché
  • Pauline Roumaud
  • Luc J. MartinEmail author


The adipose tissue is an important endocrine organ secreting numerous peptide hormones, including leptin. Increased circulating levels of leptin, as a result of hormonal resistance in obese individuals, may contribute to lower androgen production in obese males. However, the molecular mechanisms involved need to be better defined. Androgens are mainly produced by Leydig cells within the testis. In male rodents, activation of the leptin receptor modulates a cascade of intracellular signal transduction pathways which may lead to regulation of transcription factors having influences on steroidogenesis in Leydig cells. Thus, as a result of high leptin levels interacting with its receptor and modulating the activity of the JAK/STAT signaling pathway, the activity of transcription factors important for steroidogenic genes expressions may be inhibited in Leydig cells. Here we show that Lepr is increasingly expressed within Leydig cells according to postnatal development. Although high levels of leptin (corresponding to obesity condition) alone had no effect on Leydig cells’ steroidogenic genes expression, it downregulated cAMP-dependent activations of the cholesterol transporter Star and of the rate-limiting steroidogenic enzyme Cyp11a1. Our results suggest that STAT transcriptional activity is downregulated by high levels of leptin, leading to reduced cAMP-dependent steroidogenic genes (Star and Cyp11a1) expressions in MA-10 Leydig cells. However, other transcription factors such as members of the SMAD and NFAT families may be involved and need further investigation to better define how leptin regulates their activities and their relevance for Leydig cells function.


Leptin Lepr Ob-R Steroidogenesis Star Cyp11a1 Leydig cells 



We would like to thank Dr. Mario Ascoli for generously providing the MA-10 cell line used in this study. We are also grateful to Dr. Jacques J. Tremblay (Université Laval, Québec, Qc) for kindly providing plasmid constructs used in this study. This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada (#386557-2012 to L.J.M.), the New Brunswick Health Research Foundation (NBHRF) (#2010-SEED-178 and 2013-OG to L.J.M.), and the New Brunswick Innovation Foundation (NBIF) (#IAR2012 and IAR2013-029 to L.J.M.).

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest that would prejudice their impartiality.


  1. 1.
    Pi-Sunyer FX (2002) The obesity epidemic: pathophysiology and consequences of obesity. Obes Res 10(Suppl 2):97S–104S. doi: 10.1038/oby.2002.202 CrossRefPubMedGoogle Scholar
  2. 2.
    Cohen PG (2001) Aromatase, adiposity, aging and disease. The hypogonadal-metabolic-atherogenic-disease and aging connection. Med Hypotheses 56:702–708. doi: 10.1054/mehy.2000.1169 CrossRefPubMedGoogle Scholar
  3. 3.
    Mårin P, Arver S (1998) Androgens and abdominal obesity. Baillières Clin Endocrinol Metab 12:441–451CrossRefPubMedGoogle Scholar
  4. 4.
    De Maddalena C, Vodo S, Petroni A, Aloisi AM (2012) Impact of testosterone on body fat composition. J Cell Physiol 227:3744–3748. doi: 10.1002/jcp.24096 CrossRefPubMedGoogle Scholar
  5. 5.
    Pardo M, Roca-Rivada A, Seoane LM, Casanueva FF (2012) Obesidomics: contribution of adipose tissue secretome analysis to obesity research. Endocrine 41:374–383. doi: 10.1007/s12020-012-9617-z CrossRefPubMedGoogle Scholar
  6. 6.
    Cohen PG (1999) The hypogonadal-obesity cycle: role of aromatase in modulating the testosterone-estradiol shunt–a major factor in the genesis of morbid obesity. Med Hypotheses 52:49–51. doi: 10.1054/mehy.1997.0624 CrossRefPubMedGoogle Scholar
  7. 7.
    Kley HK, Solbach HG, McKinnan JC, Krüskemper HL (1979) Testosterone decrease and oestrogen increase in male patients with obesity. Acta Endocrinol 91:553–563PubMedGoogle Scholar
  8. 8.
    Zumoff B, Strain GW, Miller LK et al (1990) Plasma free and non-sex-hormone-binding-globulin-bound testosterone are decreased in obese men in proportion to their degree of obesity. J Clin Endocrinol Metab 71:929–931CrossRefPubMedGoogle Scholar
  9. 9.
    Strobel A, Issad T, Camoin L et al (1998) A leptin missense mutation associated with hypogonadism and morbid obesity. Nat Genet 18:213–215. doi: 10.1038/ng0398-213 CrossRefPubMedGoogle Scholar
  10. 10.
    Ozata M, Ozdemir IC, Licinio J (1999) Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects. J Clin Endocrinol Metab 84:3686–3695CrossRefPubMedGoogle Scholar
  11. 11.
    Clément K, Vaisse C, Lahlou N et al (1998) A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392:398–401. doi: 10.1038/32911 CrossRefPubMedGoogle Scholar
  12. 12.
    Mounzih K, Lu R, Chehab FF (1997) Leptin treatment rescues the sterility of genetically obese ob/ob males. Endocrinology 138:1190–1193CrossRefPubMedGoogle Scholar
  13. 13.
    Chehab FF, Lim ME, Lu R (1996) Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nat Genet 12:318–320. doi: 10.1038/ng0396-318 CrossRefPubMedGoogle Scholar
  14. 14.
    Isidori AM, Caprio M, Strollo F et al (1999) Leptin and androgens in male obesity: evidence for leptin contribution to reduced androgen levels. J Clin Endocrinol Metab 84:3673–3680PubMedGoogle Scholar
  15. 15.
    Hu G-X, Lian Q-Q, Ge R-S et al (2009) Phthalate-induced testicular dysgenesis syndrome: Leydig cell influence. Trends Endocrinol Metab 20:139–145. doi: 10.1016/j.tem.2008.12.001 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mendis-Handagama SM, Ariyaratne HB (2001) Differentiation of the adult Leydig cell population in the postnatal testis. Biol Reprod 65:660–671CrossRefPubMedGoogle Scholar
  17. 17.
    Benton L, Shan LX, Hardy MP (1995) Differentiation of adult Leydig cells. J Steroid Biochem Mol Biol 53:61–68CrossRefPubMedGoogle Scholar
  18. 18.
    Wang G, Hardy MP (2004) Development of leydig cells in the insulin-like growth factor-I (igf-I) knockout mouse: effects of igf-I replacement and gonadotropic stimulation. Biol Reprod 70:632–639. doi: 10.1095/biolreprod.103.022590 CrossRefPubMedGoogle Scholar
  19. 19.
    Dong L, Jelinsky SA, Finger JN et al (2007) Gene expression during development of fetal and adult Leydig cells. Ann N Y Acad Sci 1120:16–35. doi: 10.1196/annals.1411.016 CrossRefPubMedGoogle Scholar
  20. 20.
    Wang R-S, Yeh S, Tzeng C-R, Chang C (2009) Androgen receptor roles in spermatogenesis and fertility: lessons from testicular cell-specific androgen receptor knockout mice. Endocr Rev 30:119–132. doi: 10.1210/er.2008-0025 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tartaglia LA (1997) The leptin receptor. J Biol Chem 272:6093–6096CrossRefPubMedGoogle Scholar
  22. 22.
    Lammert A, Kiess W, Bottner A et al (2001) Soluble leptin receptor represents the main leptin binding activity in human blood. Biochem Biophys Res Commun 283:982–988. doi: 10.1006/bbrc.2001.4885 CrossRefPubMedGoogle Scholar
  23. 23.
    Gao Q, Horvath TL (2008) Cross-talk between estrogen and leptin signaling in the hypothalamus. Am J Physiol Endocrinol Metab 294:E817–E826. doi: 10.1152/ajpendo.00733.2007 CrossRefPubMedGoogle Scholar
  24. 24.
    Kim YB, Uotani S, Pierroz DD et al (2000) In vivo administration of leptin activates signal transduction directly in insulin-sensitive tissues: overlapping but distinct pathways from insulin. Endocrinology 141:2328–2339CrossRefPubMedGoogle Scholar
  25. 25.
    Minokoshi Y, Kim Y-B, Peroni OD et al (2002) Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415:339–343. doi: 10.1038/415339a CrossRefPubMedGoogle Scholar
  26. 26.
    Lim CT, Kola B, Korbonits M (2010) AMPK as a mediator of hormonal signalling. J Mol Endocrinol 44:87–97. doi: 10.1677/JME-09-0063 CrossRefPubMedGoogle Scholar
  27. 27.
    Séverin S, Ghevaert C, Mazharian A (2010) The mitogen-activated protein kinase signaling pathways: role in megakaryocyte differentiation. J Thromb Haemost 8:17–26. doi: 10.1111/j.1538-7836.2009.03658.x CrossRefPubMedGoogle Scholar
  28. 28.
    Sharma V, Mustafa S, Patel N et al (2009) Stimulation of cardiac fatty acid oxidation by leptin is mediated by a nitric oxide-p38 MAPK-dependent mechanism. Eur J Pharmacol 617:113–117. doi: 10.1016/j.ejphar.2009.06.037 CrossRefPubMedGoogle Scholar
  29. 29.
    Stanley EL, Johnston DS, Fan J et al (2011) Stem Leydig cell differentiation: gene expression during development of the adult rat population of Leydig cells. Biol Reprod 85:1161–1166. doi: 10.1095/biolreprod.111.091850 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Soumillon M, Necsulea A, Weier M et al (2013) Cellular source and mechanisms of high transcriptome complexity in the mammalian testis. Cell Rep 3:2179–2190. doi: 10.1016/j.celrep.2013.05.031 CrossRefPubMedGoogle Scholar
  31. 31.
    Kim D, Pertea G, Trapnell C et al (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36. doi: 10.1186/gb-2013-14-4-r36 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Trapnell C, Williams BA, Pertea G et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515. doi: 10.1038/nbt.1621 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ascoli M (1981) Characterization of several clonal lines of cultured Leydig tumor cells: gonadotropin receptors and steroidogenic responses. Endocrinology 108:88–95CrossRefPubMedGoogle Scholar
  34. 34.
    Mather JP (1980) Establishment and characterization of two distinct mouse testicular epithelial cell lines. Biol Reprod 23:243–252CrossRefPubMedGoogle Scholar
  35. 35.
    Onishi M, Nosaka T, Misawa K et al (1998) Identification and characterization of a constitutively active STAT5 mutant that promotes cell proliferation. Mol Cell Biol 18:3871–3879CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tremblay JJ, Viger RS (2001) GATA factors differentially activate multiple gonadal promoters through conserved GATA regulatory elements. Endocrinology 142:977–986CrossRefPubMedGoogle Scholar
  37. 37.
    Martin LJ, Taniguchi H, Robert NM et al (2005) GATA factors and the nuclear receptors, steroidogenic factor 1/liver receptor homolog 1, are key mutual partners in the regulation of the human 3beta-hydroxysteroid dehydrogenase type 2 promoter. Mol Endocrinol 19:2358–2370. doi: 10.1210/me.2004-0257 CrossRefPubMedGoogle Scholar
  38. 38.
    Mendoza-Villarroel RE, Robert NM, Martin LJ et al (2014) The nuclear receptor NR2F2 activates star expression and steroidogenesis in mouse MA-10 and MLTC-1 Leydig cells. Biol Reprod 91:26. doi: 10.1095/biolreprod.113.115790 CrossRefPubMedGoogle Scholar
  39. 39.
    Martin LJ, Boucher N, Brousseau C, Tremblay JJ (2008) The orphan nuclear receptor NUR77 regulates hormone-induced StAR transcription in Leydig cells through cooperation with Ca2+/calmodulin-dependent protein kinase I. Mol Endocrinol 22:2021–2037. doi: 10.1210/me.2007-0370 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Martin LJ, Boucher N, El-Asmar B, Tremblay JJ (2009) cAMP-induced expression of the orphan nuclear receptor Nur77 in MA-10 Leydig cells involves a CaMKI pathway. J Androl 30:134–145. doi: 10.2164/jandrol.108.006387 CrossRefPubMedGoogle Scholar
  41. 41.
    Daigle M, Roumaud P, Martin LJ (2015) Expressions of Sox9, Sox5, and Sox13 transcription factors in mice testis during postnatal development. Mol Cell Biochem 407:209–221. doi: 10.1007/s11010-015-2470-7 CrossRefPubMedGoogle Scholar
  42. 42.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  43. 43.
    Schreiber E, Matthias P, Müller MM, Schaffner W (1989) Rapid detection of octamer binding proteins with “mini-extracts”, prepared from a small number of cells. Nucleic Acids Res 17:6419CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    El-Hefnawy T, Ioffe S, Dym M (2000) Expression of the leptin receptor during germ cell development in the mouse testis. Endocrinology 141:2624–2630CrossRefPubMedGoogle Scholar
  45. 45.
    Tena-Sempere M, Manna PR, Zhang FP et al (2001) Molecular mechanisms of leptin action in adult rat testis: potential targets for leptin-induced inhibition of steroidogenesis and pattern of leptin receptor messenger ribonucleic acid expression. J Endocrinol 170:413–423CrossRefPubMedGoogle Scholar
  46. 46.
    Gong Y, Ishida-Takahashi R, Villanueva EC et al (2007) The long form of the leptin receptor regulates STAT5 and ribosomal protein S6 via alternate mechanisms. J Biol Chem 282:31019–31027. doi: 10.1074/jbc.M702838200 CrossRefPubMedGoogle Scholar
  47. 47.
    You S, Li W, Lin T (2000) Expression and regulation of connexin43 in rat Leydig cells. J Endocrinol 166:447–453CrossRefPubMedGoogle Scholar
  48. 48.
    Allison MB, Myers MG (2014) 20 years of leptin: connecting leptin signaling to biological function. J Endocrinol 223:T25–T35. doi: 10.1530/JOE-14-0404 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Wada N, Hirako S, Takenoya F et al (2014) Leptin and its receptors. J Chem Neuroanat 61–62:191–199. doi: 10.1016/j.jchemneu.2014.09.002 CrossRefPubMedGoogle Scholar
  50. 50.
    King SR, LaVoie HA (2012) Gonadal transactivation of STARD1, CYP11A1 and HSD3B. Front Biosci 17:824–846CrossRefGoogle Scholar
  51. 51.
    El-Asmar B, Giner XC, Tremblay JJ (2009) Transcriptional cooperation between NF-kappaB p50 and CCAAT/enhancer binding protein beta regulates Nur77 transcription in Leydig cells. J Mol Endocrinol 42:131–138. doi: 10.1677/JME-08-0016 CrossRefPubMedGoogle Scholar
  52. 52.
    Simard J, Ricketts M-L, Gingras S et al (2005) Molecular biology of the 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene family. Endocr Rev 26:525–582. doi: 10.1210/er.2002-0050 CrossRefPubMedGoogle Scholar
  53. 53.
    Levy DE, Darnell JE (2002) Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3:651–662. doi: 10.1038/nrm909 CrossRefPubMedGoogle Scholar
  54. 54.
    Ruiz-Cortés ZT, Martel-Kennes Y, Gévry NY et al (2003) Biphasic effects of leptin in porcine granulosa cells. Biol Reprod 68:789–796CrossRefPubMedGoogle Scholar
  55. 55.
    Batarseh A, Li J, Papadopoulos V (2010) Protein kinase C epsilon regulation of translocator protein (18 kDa) Tspo gene expression is mediated through a MAPK pathway targeting STAT3 and c-Jun transcription factors. BioChemistry 49:4766–4778. doi: 10.1021/bi100020e CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Frühbeck G (2006) Intracellular signalling pathways activated by leptin. Biochem J 393:7–20. doi: 10.1042/BJ20051578 CrossRefPubMedGoogle Scholar
  57. 57.
    Bendinelli P, Maroni P, Pecori Giraldi F, Piccoletti R (2000) Leptin activates Stat3, Stat1 and AP-1 in mouse adipose tissue. Mol Cell Endocrinol 168:11–20CrossRefPubMedGoogle Scholar
  58. 58.
    Jean S, Landry D, Daigle M, Martin LJ (2012) Influence of the adipose derived hormone resistin on STAT factors, steroidogenesis and proliferation of Leydig cells. Asian Pac J Reprod 1:1–6CrossRefGoogle Scholar
  59. 59.
    Martin LJ, Tremblay JJ (2009) The nuclear receptors NUR77 and SF1 play additive roles with c-JUN through distinct elements on the mouse Star promoter. J Mol Endocrinol 42:119–129. doi: 10.1677/JME-08-0095 CrossRefPubMedGoogle Scholar
  60. 60.
    Dufau ML (1988) Endocrine regulation and communicating functions of the Leydig cell. Annu Rev Physiol 50:483–508. doi: 10.1146/ CrossRefPubMedGoogle Scholar
  61. 61.
    Roumaud P, Martin LJ (2015) Roles of leptin, adiponectin and resistin in the transcriptional regulation of steroidogenic genes contributing to decreased Leydig cells function in obesity. Horm Mol Biol Clin Investig 24:25–45. doi: 10.1515/hmbci-2015-0046 PubMedGoogle Scholar
  62. 62.
    Caprio M, Isidori AM, Carta AR et al (1999) Expression of functional leptin receptors in rodent Leydig cells. Endocrinology 140:4939–4947CrossRefPubMedGoogle Scholar
  63. 63.
    Chung J, Uchida E, Grammer TC, Blenis J (1997) STAT3 serine phosphorylation by ERK-dependent and -independent pathways negatively modulates its tyrosine phosphorylation. Mol Cell Biol 17:6508–6516CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Wang Y, Fang F, Wong C-W (2010) Troglitazone is an estrogen-related receptor alpha and gamma inverse agonist. Biochem Pharmacol 80:80–85. doi: 10.1016/j.bcp.2010.03.013 CrossRefPubMedGoogle Scholar
  65. 65.
    Gonzalez CR, Gonzalez B, Rulli SB et al (2010) TGF-beta1 system in Leydig cells. Part II: TGF-beta1 and progesterone, through Smad1/5, are involved in the hyperplasia/hypertrophy of Leydig cells. J Reprod Dev 56:400–404CrossRefPubMedGoogle Scholar
  66. 66.
    Chai W-R, Wang Q, Gao H-B (2007) NFAT2 is implicated in corticosterone-induced rat Leydig cell apoptosis. Asian J Androl 9:623–633. doi: 10.1111/j.1745-7262.2007.00257.x CrossRefPubMedGoogle Scholar
  67. 67.
    Denny P, Swift S, Connor F, Ashworth A (1992) An SRY-related gene expressed during spermatogenesis in the mouse encodes a sequence-specific DNA-binding protein. EMBO J 11:3705–3712PubMedPubMedCentralGoogle Scholar
  68. 68.
    Ueda R, Yoshida K, Kawase T et al (2007) Preferential expression and frequent IgG responses of a tumor antigen, SOX5, in glioma patients. Int J Cancer 120:1704–1711. doi: 10.1002/ijc.22472 CrossRefPubMedGoogle Scholar
  69. 69.
    Connor F, Wright E, Denny P et al (1995) The Sry-related HMG box-containing gene Sox6 is expressed in the adult testis and developing nervous system of the mouse. Nucleic Acids Res 23:3365–3372CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Kloek C, Haq AK, Dunn SL et al (2002) Regulation of Jak kinases by intracellular leptin receptor sequences. J Biol Chem 277:41547–41555. doi: 10.1074/jbc.M205148200 CrossRefPubMedGoogle Scholar
  71. 71.
    Villanueva EC, Myers MG Jr (2008) Leptin receptor signaling and the regulation of mammalian physiology. Int J Obes 32(Suppl 7):S8–12. doi: 10.1038/ijo.2008.232 CrossRefGoogle Scholar
  72. 72.
    Banks AS, Davis SM, Bates SH, Myers MG Jr (2000) Activation of downstream signals by the long form of the leptin receptor. J Biol Chem 275:14563–14572CrossRefPubMedGoogle Scholar
  73. 73.
    Baumann H, Morella KK, White DW et al (1996) The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors. Proc Natl Acad Sci USA 93:8374–8378CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    White DW, Kuropatwinski KK, Devos R et al (1997) Leptin receptor (OB-R) signaling. Cytoplasmic domain mutational analysis and evidence for receptor homo-oligomerization. J Biol Chem 272:4065–4071CrossRefPubMedGoogle Scholar
  75. 75.
    Schindler C, Darnell JE Jr (1995) Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu Rev Biochem 64:621–651. doi: 10.1146/ CrossRefPubMedGoogle Scholar
  76. 76.
    Bjorbak C, Lavery HJ, Bates SH et al (2000) SOCS3 mediates feedback inhibition of the leptin receptor via Tyr985. J Biol Chem 275:40649–40657. doi: 10.1074/jbc.M007577200 CrossRefPubMedGoogle Scholar
  77. 77.
    Landry D, Cloutier F, Martin LJ (2013) Implications of leptin in neuroendocrine regulation of male reproduction. Reprod Biol 13:1–14. doi: 10.1016/j.repbio.2012.12.001 CrossRefPubMedGoogle Scholar
  78. 78.
    Prolo P, Wong M-L, Licinio J (1998) Leptin. Int J Biochem Cell Biol 30:1285–1290. doi: 10.1016/S1357-2725(98)00094-6 CrossRefPubMedGoogle Scholar
  79. 79.
    Bado A, Levasseur S, Attoub S et al (1998) The stomach is a source of leptin. Nature 394:790–793. doi: 10.1038/29547 CrossRefPubMedGoogle Scholar
  80. 80.
    Wang J, Liu R, Hawkins M et al (1998) A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature 393:684–688. doi: 10.1038/31474 CrossRefPubMedGoogle Scholar
  81. 81.
    Ishikawa T, Fujioka H, Ishimura T et al (2007) Expression of leptin and leptin receptor in the testis of fertile and infertile patients. Andrologia 39:22–27. doi: 10.1111/j.1439-0272.2006.00754.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of BiologyUniversité de MonctonMonctonCanada

Personalised recommendations