Molecular and Cellular Biochemistry

, Volume 433, Issue 1–2, pp 41–50 | Cite as

Alterations of the oxidative status in rat hippocampus and prodepressant effect of chronic testosterone enanthate administration

  • Jovana Joksimović
  • Dragica Selaković
  • Vladimir JakovljevićEmail author
  • Vladimir Mihailović
  • Jelena Katanić
  • Tatjana Boroja
  • Gvozden Rosić


In a last few decades, anabolic–androgenic steroids (AASs) abuse has become serious health concern especially among adolescents. AASs abuse has been reported to be involved in pathogenesis of various mood disorders, including depression. In order to evaluate the effects of chronic (6 weeks) testosterone enanthate (TE) treatment in supraphysiological dose and exercise on depression-like behavior in rats, 32 male rats were divided into four groups: control (C), testosterone enanthate (T, 20 mg/kg/w, s.c.), exercise (E, swimming for 1 h/day), and combined group—testosterone enanthate plus exercise (T + E). TE produced prodepressant effect in tail suspension test (TST) parameters compared to the control and exercise groups, while exercise induced the opposite effect. Simultaneous TE administration along with exercise attenuated the antidepressant effect of exercise reversing the parameters of TST to the control values. Oxidative stress markers in rat hippocampus were significantly altered following applied protocols. TE administration increased index of lipid peroxidation (TBARS) and decreased superoxide dismutase activity (SOD), while exercise induced the opposite effect, with no change in glutathione (GSH) levels. Our results indicate that TE chronic treatment resulted in clear depressive-like behavior, even abolishing beneficial antidepressant effects of exercise in TST that was accompanied with increased oxidative damage in rat hippocampus. The antidepressant effect of exercise correlated with the improvement of redox status in hippocampal tissue. Behavioral parameters obtained in TST significantly correlated with the levels of oxidative stress markers.


Depression Hippocampus Testosterone enanthate Exercise Oxidative stress 



Anabolic–Androgenic steroids


Testosterone enanthate


Tail suspension test


Thiobarbituric acid reactive substances


Superoxide dismutase







This work was supported by the Faculty of Medical Sciences (JP 01/13), University of Kragujevac, Serbia.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human or animal rights

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All research procedures were carried out in accordance with European Directive for welfare of laboratory animals No. 86/609/EEC and the principles of Good Laboratory Practice (GLP), approved by the Ethical Committee of the Faculty of Medical Sciences, University of Kragujevac, Serbia.


  1. 1.
    Basaria S, Wahlstrom JT, Dobs AS (2001) Clinical review 138: anabolic-androgenic steroid therapy in the treatment of chronic diseases. J Clin Endocrinol Metab 86:5108–5117. doi: 10.1210/jcem.86.11.7983 CrossRefPubMedGoogle Scholar
  2. 2.
    Kamel HK, Perry HM 3rd, Morley JE (2001) Hormone replacement therapy and fractures in older adults. J Am Geriatr Soc 49:179–187CrossRefPubMedGoogle Scholar
  3. 3.
    Pardridge WM (1986) Serum bioavailability of sex steroid hormones. Clin Endocrinol Metab 15:259–278CrossRefPubMedGoogle Scholar
  4. 4.
    Piacentino D, Kotzalidis GD, Del Casale A, Aromatario MR, Pomara C, Girardi P, Sani G (2015) Anabolic-androgenic steroid use and psychopathology in athletes. A systematic review. Curr Neuropharmacol 13:101–121 doi: 10.2174/1570159X13666141210222725 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Costine BA, Oberlander JG, Davis MC, Penatti CA, Porter DM, Leaton RN, Henderson LP (2010) Chronic anabolic androgenic steroid exposure alters corticotropin releasing factor expression and anxiety-like behaviors in the female mouse. Psychoneuroendocrinology 35:1473–1485. doi: 10.1016/j.psyneuen.2010.04.015 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Reyes-Fuentes A, Veldhuis JD (1993) Neuroendocrine physiology of the normal male gonadal axis. Endocrinol Metab Clin North Am 22:93–124PubMedGoogle Scholar
  7. 7.
    Kanayama G, Hudson JI, Pope HG (2008) Long-term psychiatric and medical consequences of anabolic-androgenic steroid abuse: a looming public health concern? Drug Alcohol Depend 98:1–12. doi: 10.1016/j.drugalcdep.2008.05.004 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Tugyan K, Ozbal S, Cilaker S, Kiray M, Pekcetin C, Ergur BU, Kumral A (2013) Neuroprotective effect of erythropoietin on nandrolone decanoate-induced brain injury in rats. Neurosci Lett 533:28–33. doi: 10.1016/j.neulet.2012.10.004 CrossRefPubMedGoogle Scholar
  9. 9.
    Zotti M, Tucci P, Colaianna M, Morgese MG, Mhillaj E, Schiavone S, Scaccianoce S, Cuomo V, Trabace L (2014) Chronic nandrolone administration induces dysfunction of the reward pathway in rats. Steroids 79:7–13CrossRefPubMedGoogle Scholar
  10. 10.
    Célérier E, Yazdi MT, Castañé A, Ghozland S, Nyberg F, Maldonado R (2003) Effects of nandrolone on acute morphine responses, tolerance and dependence in mice. Eur J Pharmacol 465:69–81CrossRefPubMedGoogle Scholar
  11. 11.
    Rocha VM, Calil CM, Ferreira R, Moura MJ, Marcondes FK (2007) Influence of anabolic steroid on anxiety levels in sedentary male rats. Stress 10:326–331. doi: 10.1080/10253890701281344 CrossRefPubMedGoogle Scholar
  12. 12.
    Matrisciano F, Modafferi AM, Togna GI, Barone Y, Pinna G, Nicoletti F, Scaccianoce S (2010) Repeated anabolic androgenic steroid treatment causes antidepressant-reversible alterations of the hypothalamic-pituitary-adrenal axis, BDNF levels and behavior. Neuropharmacology 58:1078–1084. doi: 10.1016/j.neuropharm.2010.01.015 CrossRefPubMedGoogle Scholar
  13. 13.
    Davis C, Scott-Robertson L (2000) A psychological comparison of females with anorexia nervosa and competitive male bodybuilders: body shape ideals in the extreme. Eat Behav 1:33–46CrossRefPubMedGoogle Scholar
  14. 14.
    Duman CH, Schlesinger L, Russell DS, Duman RS (2008) Voluntary exercise produces antidepressant and anxiolytic behavioral effects in mice. Brain Res 1199:148–158. doi: 10.1016/j.brainres.2007.12.047 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sigwalt AR, Budde H, Helmich I, Glaser V, Ghisoni K, Lanza S, Cadore EL, Lhullier FL, de Bem AF, Hohl A, de Matos FJ, de Oliveira PA, Prediger RD, Guglielmo LG, Latini A (2011) Molecular aspects involved in swimming exercise training reducing anhedonia in a rat model of depression. Neuroscience 192:661–674. doi: 10.1016/j.neuroscience.2011.05.075 CrossRefPubMedGoogle Scholar
  16. 16.
    Tricker R, Casaburi R, Storer TW, Clevenger B, Berman N, Shirazi A, Bhasin S (1996) The effects of supraphysiological doses of testosterone on angry behavior in healthy eugonadal men—a clinical research center study. J ClinEndocrinol Metab 81:3754–3758. doi: 10.1210/jcem.81.10.8855834 Google Scholar
  17. 17.
    Naghdi N, Majlessi N, Bozorgmehr T (2005) The effect of intrahippocampal injection of testosterone enanthate (an androgen receptor agonist) and anisomycin (protein synthesis inhibitor) on spatial learning and memory in adult, male rats. Behav Brain Res 156:263–268. doi: 10.1016/j.bbr.2004.05.032 CrossRefPubMedGoogle Scholar
  18. 18.
    Mohammadi-Farani A, Haghighi A, Ghazvineh M (2015) Effects of long term administration of testosterone and estradiol on spatial memory in rats. Res Pharm Sci 10:407–418PubMedPubMedCentralGoogle Scholar
  19. 19.
    Balmus IM, Ciobica A, Antioch I, Dobrin R, Timofte D (2016) Oxidative stress implications in the affective disorders: main biomarkers, animal models relevance, genetic perspectives, and antioxidant approaches. Oxid Med Cell Longev 2016:3975101. doi: 10.1155/2016/3975101 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658. doi: 10.1111/j.1471-4159.2006.03907.x CrossRefPubMedGoogle Scholar
  21. 21.
    Baillet A, Chanteperdrix V, Trocmé C, Casez P, Garrel C, Besson G (2010) The role of oxidative stress in amyotrophic lateral sclerosis and Parkinson’s disease. Neurochem Res 35:1530–1537. doi: 10.1007/s11064-010-0212-5 CrossRefPubMedGoogle Scholar
  22. 22.
    Ozcan ME, Gulec M, Ozerol E, Polat R, Akyol O (2004) Antioxidant enzyme activities and oxidative stress in affective disorders. Int Clin Psychopharmacol 19:89–95CrossRefPubMedGoogle Scholar
  23. 23.
    Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15:316–328. doi: 10.1016/j.numecd.2005.05.003 CrossRefPubMedGoogle Scholar
  24. 24.
    Gautam M, Agrawal M, Gautam M, Sharma P, Gautam AS, Gautam S (2012) Role of antioxidants in generalised anxiety disorder and depression. Indian J Psychiatry 54:244–247. doi: 10.4103/0019-5545.102424 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Holmes S, Abbassi B, Su C, Singh M, Cunningham RL (2013) Oxidative stress defines the neuroprotective or neurotoxic properties of androgens in immortalized female rat dopaminergic neuronal cells. Endocrinology 154:4281–4292. doi: 10.1210/en.2013-1242 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cunningham RL, Singh M, O’Bryant SE, Hall JR, Barber RC (2014) Oxidative stress, testosterone, and cognition among Caucasian and Mexican-American men with and without Alzheimer’s disease. J Alzheimers Dis 40:563–573. doi: 10.3233/JAD-131994 PubMedPubMedCentralGoogle Scholar
  27. 27.
    Camiletti-Moirón D, Aparicio VA, Nebot E, Medina G, Martínez R, Kapravelou G, Andrade A, Porres JM, López-Jurado M, Aranda P (2015) High-intensity exercise modifies the effects of stanozolol on brain oxidative stress in Rats. Int J Sports Med 36:984–991. doi: 10.1055/s-0035-1548941 CrossRefPubMedGoogle Scholar
  28. 28.
    Pomara C, Neri M, Bello S, Fiore C, Riezzo I, Turillazzi E (2015) Neurotoxicity by synthetic androgen steroids: oxidative stress, apoptosis, and neuropathology: a review. Curr Neuropharmacol. 13(1):132–145CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Orlando R, Caruso A, Molinaro G, Motolese M, Matrisciano F, Togna G, Melchiorri D, Nicoletti F, Bruno V (2007) Nanomolar concentrations of anabolic-androgenic steroids amplify excitotoxic neuronal death in mixed mouse cortical cultures. Brain Res 1165:21–29CrossRefPubMedGoogle Scholar
  30. 30.
    Leite HR, Mourão FA, Drumond LE, Ferreira-Vieira TH, Bernardes D, Silva JF, Lemos VS, Moraes MF, Pereira GS, Carvalho-Tavares J, Massensini AR (2012) Swim training attenuates oxidative damage and promotes neuroprotection in cerebral cortical slices submitted to oxygen glucose deprivation. J Neurochem 123(2):317–324. doi: 10.1111/j.1471-4159.2012.07898.x CrossRefPubMedGoogle Scholar
  31. 31.
    Nonato LF, Rocha-Vieira E, Tossige-Gomes R, Soares AA, Soares BA, Freitas DA, Oliveira MX, Mendonça VA, Lacerda AC, Massensini AR, Leite HR (2016) Swimming training attenuates oxidative damage and increases enzymatic but not non-enzymatic antioxidant defenses in the rat brain. Braz J Med Biol Res 49(10):e5310. doi: 10.1590/1414-431X20165310 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Contarteze R, Manchado F, Gobatto C, De Mello M (2008) Stress biomarkers in rats submitted to swimming and treadmill running exercises. Comp Biochem Physiol A Mol Integr Physiol 151:415–422. doi: 10.1016/j.cbpa.2007.03.005 CrossRefPubMedGoogle Scholar
  33. 33.
    Sugizaki MM, Dal Pai-Silva M, Carvalho RF, Padovani CR, Bruno A, Nascimento AF, Aragon FF, Novelli EL, Cicogna AC (2006) Exercise training increases myocardial inotropic response in food restricted rats. Int J Cardiol 112:191–201. doi: 10.1016/j.ijcard.2005.08.039 CrossRefPubMedGoogle Scholar
  34. 34.
    Liu X, Yang le J, Fan SJ, Jiang H, Pan F (2010) Swimming exercise effects on the expression of HSP70 and iNOS in hippocampus and prefrontal cortex in combined stress. Neurosci Lett 476:99–103. doi: 10.1016/j.neulet.2010.04.011 CrossRefPubMedGoogle Scholar
  35. 35.
    Li KW (2011) Neuroproteomics. New York: Humana Press/Springer, pp. 15–20CrossRefGoogle Scholar
  36. 36.
    Wohlenberg M, Almeida D, Bokowski L, Medeiros N, Agostini F, Funchal C, Dani C (2014) Antioxidant activity of grapevine leaf extracts against oxidative stress induced by carbon tetrachloride in cerebral cortex, hippocampus and cerebellum of rats. Antioxidants (Basel) 3(2):200–211. doi: 10.3390/antiox3020200 CrossRefGoogle Scholar
  37. 37.
    Chermat R, Thierry B, Mico JA, Steru L, Simon P (1986) Adaptation of the tail suspension test to the rat. J Pharmacol 17:348–350PubMedGoogle Scholar
  38. 38.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358CrossRefPubMedGoogle Scholar
  39. 39.
    Misra HP, Fridovich I (1972) The role of superoxide anion in the auto-oxidation of epinephrine and simple assay for superoxide dismutase. J Biol Chem 247:3170–3175PubMedGoogle Scholar
  40. 40.
    Ellman GL (1959) Tissue sulphydryl group. Arch Biochem Biophys 82:70–77CrossRefPubMedGoogle Scholar
  41. 41.
    Lowry OH, Rosebrough NL, Farr AL, Randall RI (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  42. 42.
    Liu W, Sheng H, Xu Y, Liu Y, Lu J, Ni X (2013) Swimming exercise ameliorates depression-like behavior in chronically stressed rats: relevant to proinflammatory cytokines and IDO activation. Behav Brain Res 242:110–116. doi: 10.1016/j.bbr.2012.12.041 CrossRefPubMedGoogle Scholar
  43. 43.
    Greenwood BN, Foley TE, Day HE, Campisi J, Hammack SH, Campeau S, Maier SF, Fleshner M (2003) Freewheel running prevents learned helplessness/behavioral depression: role of dorsal raphe serotonergic neurons. J Neurosci 23:2889–2898PubMedGoogle Scholar
  44. 44.
    Fox KR (1999) The influence of physical activity on mental well-being. Public Health Nutr 2:411–418CrossRefPubMedGoogle Scholar
  45. 45.
    Tanehkar F, Rashidy-Pour A, Vafaei AA, Sameni HR, Haghighi S, Miladi-Gorji H, Motamedi F, Akhavan MM, Bavarsad K (2013) Voluntary exercise does not ameliorate spatial learning and memory deficits induced by chronic administration of nandrolone decanoate in rats. Horm Behav 63:158–165. doi: 10.1016/j.yhbeh.2012.10.003 CrossRefPubMedGoogle Scholar
  46. 46.
    Rainer Q, Speziali S, Rubino T, Dominguez-Lopez S, Bambico FR, Gobbi G, Parolaro D (2014) Chronic nandrolone decanoate exposure during adolescence affects emotional behavior and monoaminergic neurotransmission in adulthood. Neuropharmacology 83:79–88. doi: 10.1016/j.neuropharm.2014.03.015 CrossRefPubMedGoogle Scholar
  47. 47.
    Rosic G, Joksimovic J, Selakovic D, Milovanovic D, Jakovljevic V (2014) Anxiogenic effects of chronic exposure to nandrolone decanoate (ND) at supraphysiological dose in rats: a brief report. Neuro Endocrinol Lett 35:703–710PubMedGoogle Scholar
  48. 48.
    Frye CA, Walf AA (2009) Depression-like behavior of aged male and female mice is ameliorated with administration of testosterone or its metabolites. Physiol Behav 97(2):266–269CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Carrier N, Kabbaj M (2012) Testosterone and imipramine have antidepressant effects in socially isolated male but not female rats. Horm Behav 61(5):678–685CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Estrada M, Varshney A, Ehrlich BE (2006) Elevated testosterone induces apoptosis in neuronal cells. J Biol Chem 281(35):25492–25501CrossRefPubMedGoogle Scholar
  51. 51.
    Johnson JM, Nachtigall LB, Stern TA (2013) The effect of testosterone levels on mood in men: a review. Psychosomatics 54(6):509–514CrossRefPubMedGoogle Scholar
  52. 52.
    Lindqvist AS, Johansson-Steensland P, Nyberg F, Fahlke C (2002) Anabolic androgenic steroid affects competitive behaviour, behavioural response to ethanol and brain serotonin levels. Behav Brain Res 133:21–29CrossRefPubMedGoogle Scholar
  53. 53.
    Kurling S, Kankaanpää A, Ellermaa S, Karila T, Seppälä T (2005) The effect of sub-chronic nandrolone decanoate treatment on dopaminergic and serotonergic neuronal systems in the brains of rats. Brain Res 1044:67–75. doi: 10.1016/j.brainres.2005.02.071 CrossRefPubMedGoogle Scholar
  54. 54.
    Markou A, Kosten TR, Koob GF (1998) Neurobiological similarities in depression and drug dependence: a self-medication hypothesis. Neuropsychopharmacology 18:135–174. doi: 10.1016/S0893-133X(97)00113-9 CrossRefPubMedGoogle Scholar
  55. 55.
    Busardò FP, Frati P, Sanzo MD, Napoletano S, Pinchi E, Zaami S, Fineschi V (2015) The impact of nandrolone decanoate on the central nervous system. Curr Neuropharmacol 13:122–131 doi: 10.2174/1570159X13666141210225822.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Bucinskaite V, Theodorsson E, Crumpton K, Stenfors C, Ekblom A, Lundeberg T (1996) Effects of repeated sensory stimulation (electro-acupuncture) and physical exercise (running) on open-field behaviour and concentrations of neuropeptides in the hippocampus in WKY and SHR rats. Eur J Neurosci 8:382–387CrossRefPubMedGoogle Scholar
  57. 57.
    Jiang P, Dang RL, Li HD, Zhang LH, Zhu WY, Xue YM, Tang M (2014) The impacts of swimming exercise on hippocampal expression of neurotrophic factors in rats exposed to chronic unpredictable mild stress. Evid Based Complement Alternat Med 729–827. doi: 10.1155/2014/729827
  58. 58.
    Heilig M (2004) The NPY system in stress, anxiety and depression. Neuropeptides 38:213–224. doi: 10.1016/j.npep.2004.05.002 CrossRefPubMedGoogle Scholar
  59. 59.
    Turillazzi E, Neri M, Cerretani D, Cantatore S, Frati P, Moltoni L, Busardò FP, Pomara C, Riezzo I, Fineschi V (2016) Lipid peroxidation and apoptotic response in rat brain areas induced by long-term administration of nandrolone: the mutual crosstalk between ROS and NF-kB. J Cell Mol Med 20(4):601–612. doi: 10.1111/jcmm.12748 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Salim S, Sarraj N, Taneja M, Saha K, Tejada-Simon MV, Chugh G (2010) Moderate treadmill exercise prevents oxidative stress-induced anxiety-like behavior in rats. Behav Brain Res 208(2):545–552. doi: 10.1016/j.bbr.2009.12.039 CrossRefPubMedGoogle Scholar
  61. 61.
    Tousson E, Hafez E, Massoud A, Elfeky A (2016) Ameliorating effect of propolis and moringa extract against equigan induced neurotoxicity and oxidative stress on rat hippocampus. JBSAR 2(1):30–37Google Scholar
  62. 62.
    Aguiar AS Jr, Pinho RA (2007) Effects of physical exercise over the redox brain state. Rev Bras Med Esporte 13(5):355–360CrossRefGoogle Scholar
  63. 63.
    Radak Z, Asano K, Inoue M, Kizaki T, Oh-Ishi S, Suzuki K (1995) Superoxide dismutase derivative reduces oxidative damage in skeletal muscle of rats during exhaustive exercise. J Appl Physiol 79:129–135PubMedGoogle Scholar
  64. 64.
    Somani SM, Ravi R, Rybak LP (1995) Effect of exercise training on antioxidant system in brain regions of rat. Pharmacol Biochem Behav 50:635–639CrossRefPubMedGoogle Scholar
  65. 65.
    Alonso-Alvarez C, Bertrand S, Faivre B, Chastel O, Sorci G (2007) Testosterone and oxidative stress: the oxidation handicap hypothesis. Proc R Soc B 274:819–825CrossRefPubMedGoogle Scholar
  66. 66.
    Chainy GBN, Samantaray S, Samanta L (1997) Testosterone-induced changes in testicular antioxidant system. Andrologia 29:343–349CrossRefPubMedGoogle Scholar
  67. 67.
    Aydilek N, Aksakal M, Karakilcik AZ (2004) Effects of testosterone and vitamin E on the antioxidant system in rabbit testis. Andrologia 36:277–281CrossRefPubMedGoogle Scholar
  68. 68.
    Pansarasa O, D’Antona G, Gualea MR, Marzani B, Pellegrino MA, Marzatico F (2002) “Oxidative stress”: effects of mild endurance training and testosterone treatment on rat gastrocnemius muscle. Eur J Appl Physiol 87:550–555CrossRefPubMedGoogle Scholar
  69. 69.
    Zhu XD, Bonet B, Knopp RH (1997) 17b-estradiol, progesterone, and testosterone inversely modulate lowdensity lipoprotein oxidation and cytotoxicity in cultured placental trophoblast and macrophages. Am J Obstet Gynec 177:196–209CrossRefPubMedGoogle Scholar
  70. 70.
    Sinet PM, Garber P (1981) Inactivation of human Cu-Zn superoxide dismutase during exposure to 02 ; and H202. Arch Biochem Biophys 212:411–416CrossRefPubMedGoogle Scholar
  71. 71.
    Behr GA, Moreira JC, Frey BN (2012) Preclinical and clinical evidence of antioxidant effects of antidepressant agents: implications for the pathophysiology of major depressive disorder. Oxid Med Cell Longev 609421Google Scholar
  72. 72.
    Maes M, Galecki P, Chang YS, Berk M (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry 35(3):676–692CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Jovana Joksimović
    • 1
  • Dragica Selaković
    • 1
  • Vladimir Jakovljević
    • 1
    Email author
  • Vladimir Mihailović
    • 2
  • Jelena Katanić
    • 2
  • Tatjana Boroja
    • 2
  • Gvozden Rosić
    • 1
  1. 1.Department of Physiology, Faculty of Medical SciencesUniversity of KragujevacKragujevacSerbia
  2. 2.Department of Chemistry, Faculty of ScienceUniversity of KragujevacKragujevacSerbia

Personalised recommendations