Molecular and Cellular Biochemistry

, Volume 431, Issue 1–2, pp 197–210 | Cite as

Carnosine modulates nitric oxide in stimulated murine RAW 264.7 macrophages

  • Giuseppe Caruso
  • Claudia G. Fresta
  • Francisco Martinez-Becerra
  • Lopalco Antonio
  • Ryan T. Johnson
  • Richard P. S. de Campos
  • Joseph M. Siegel
  • Manjula B. Wijesinghe
  • Giuseppe Lazzarino
  • Susan M. Lunte


Excess nitric oxide (NO) production occurs in several pathological states, including neurodegeneration, ischemia, and inflammation, and is generally accompanied by increased oxidative/nitrosative stress. Carnosine [β-alanine-histidine (β-Ala-His)] has been reported to decrease oxidative/nitrosative stress-associated cell damage by reducing the amount of NO produced. In this study, we evaluated the effect of carnosine on NO production by murine RAW 264.7 macrophages stimulated with lipopolysaccharides + interferon-γ. Intracellular NO and intracellular and extracellular nitrite were measured by microchip electrophoresis with laser-induced fluorescence and by the Griess assay, respectively. Results showed that carnosine causes an apparent suppression of total NO production by stimulated macrophages accompanied by an unexpected simultaneous drastic increase in its intracellular low toxicity endproduct, nitrite, with no inhibition of inducible nitric oxide synthase (iNOS). ESI-MS and NMR spectroscopy in a cell-free system showed the formation of multiple adducts (at different ratios) of carnosine-NO and carnosine-nitrite, involving both constituent amino acids (β-Ala and His) of carnosine, thus providing a possible mechanism for the changes in free NO and nitrite in the presence of carnosine. In stimulated macrophages, the addition of carnosine was also characterized by changes in the expression of macrophage activation markers and a decrease in the release of IL-6, suggesting that carnosine might alter M1/M2 macrophage ratio. These results provide evidence for previously unknown properties of carnosine that modulate the NO/nitrite ratio of stimulated macrophages. This modulation is also accompanied by changes in the release of pro-inflammatory molecules, and does not involve the inhibition of iNOS activity.


Nitric oxide Nitrite Carnosine Microchip electrophoresis Macrophages Cytokines secretion 







Bovine serum albumin






Cluster of differentiation 86


Cluster of differentiation 206


Collision-induced dissociation


4-Amino-5-methylamino-2′,7′-difluorofluorescein diacetate


Diethylammonium (Z)-1-(N,N-diethylamino)diazen-1-ium-1,2-diolate


Dulbecco’s modified Eagle’s medium


Dimethyl sulfoxide


Electrospray mass spectrometry


Fetal bovine serum


Fluorescence minus one




















Inducible nitric oxide synthase


Keratinocyte chemoattractant




Microchip electrophoresis with laser-induced fluorescence


Major histocompatibility complex class II


Nuclear magnetic resonance


Nitric oxide




Phosphate-buffered saline




Reactive nitrogen species


Reactive oxygen species


Sodium dodecyl sulfate


Tumor necrosis factor α

Supplementary material

11010_2017_2991_MOESM1_ESM.pdf (324 kb)
Supplementary material 1 (PDF 324 KB)


  1. 1.
    Blaise GA, Gauvin D, Gangal M, Authier S (2005) Nitric oxide, cell signaling and cell death. Toxicology 208:177–192CrossRefPubMedGoogle Scholar
  2. 2.
    Vallance P (1992) Endothelial regulation of vascular tone. Postgrad Med J 68:697–701CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Schlossmann J, Feil R, Hofmann F (2003) Signaling through NO and cGMP-dependent protein kinases. Ann Med 35:21–27CrossRefPubMedGoogle Scholar
  4. 4.
    Lane P, Gross SS (1999) Cell signaling by nitric oxide. Semin Nephrol 19:215–229PubMedGoogle Scholar
  5. 5.
    Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Aktan F (2004) iNOS-mediated nitric oxide production and its regulation. Life Sci 75:639–653CrossRefPubMedGoogle Scholar
  7. 7.
    Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AM (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8:766–775CrossRefPubMedGoogle Scholar
  8. 8.
    Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483CrossRefPubMedGoogle Scholar
  9. 9.
    Maes M, Galecki P, Chang YS, Berk M (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry 35:676–692CrossRefPubMedGoogle Scholar
  10. 10.
    Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P (2008) Redox regulation of cell survival. Antioxid Redox Signal 10:1343–1374CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Schulz JB, Lindenau J, Seyfried J, Dichgans J (2000) Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 267:4904–4911CrossRefPubMedGoogle Scholar
  12. 12.
    Lopalco A, Dalwadi G, Niu S, Schowen RL, Douglas J, Stella VJ (2016) Mechanism of decarboxylation of pyruvic acid in the presence of hydrogen peroxide. J Pharm Sci 105:705–713CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lopalco A, Douglas J, Denora N, Stella VJ (2016) Determination of pK a and hydration constants for a series of α-keto-carboxylic acids using nuclear magnetic resonance spectrometry. J Pharm Sci 105:664–672CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lopalco A, Stella VJ (2016) Effect of Molecular structure on the relative hydrogen peroxide scavenging ability of some α-keto carboxylic acids. J Pharm Sci 105:2879–2885CrossRefPubMedGoogle Scholar
  15. 15.
    Gariballa SE, Sinclair AJ (2000) Carnosine: physiological properties and therapeutic potential. Age Ageing 29:207–210CrossRefPubMedGoogle Scholar
  16. 16.
    Hobart LJ, Seibel I, Yeargans GS, Seidler NW (2004) Anti-crosslinking properties of carnosine: significance of histidine. Life Sci 75:1379–1389CrossRefPubMedGoogle Scholar
  17. 17.
    Guiotto A, Calderan A, Ruzza P, Borin G (2005) Carnosine and carnosine-related antioxidants: a review. Curr Med Chem 12:2293–2315CrossRefPubMedGoogle Scholar
  18. 18.
    Bellia F, Vecchio G, Cuzzocrea S, Calabrese V, Rizzarelli E (2011) Neuroprotective features of carnosine in oxidative driven diseases. Mol Aspects Med 32:258–266CrossRefPubMedGoogle Scholar
  19. 19.
    Fontana M, Pinnen F, Lucente G, Pecci L (2002) Prevention of peroxynitrite-dependent damage by carnosine and related sulphonamido pseudodipeptides. Cell Mol Life Sci 59:546–551CrossRefPubMedGoogle Scholar
  20. 20.
    Nicoletti VG, Santoro AM, Grasso G, Vagliasindi LI, Giuffrida ML, Cuppari C, Purrello VS, Stella AM, Rizzarelli E (2007) Carnosine interaction with nitric oxide and astroglial cell protection. J Neurosci Res 85:2239–2245CrossRefPubMedGoogle Scholar
  21. 21.
    Boldyrev AA, Aldini G, Derave W (2013) Physiology and pathophysiology of carnosine. Physiol Rev 93:1803–1845CrossRefPubMedGoogle Scholar
  22. 22.
    Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164:6166–6173CrossRefPubMedGoogle Scholar
  24. 24.
    Lee J, Ryu H, Ferrante RJ, Morris SM Jr, Ratan RR (2003) Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox. Proc Natl Acad Sci USA 100:4843–4848CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Munder M (2009) Arginase: an emerging key player in the mammalian immune system. Br J Pharmacol 158:638–651CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zhang Y, Choksi S, Chen K, Pobezinskaya Y, Linnoila I, Liu ZG (2013) ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res 23:898–914CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mainz ER, Gunasekara DB, Caruso G, Jensen DT, Hulvey MK, da Silva JAF, Metto EC, Culbertson AH, Culbertson CT, Lunte SM (2012) Monitoring intracellular nitric oxide production using microchip electrophoresis and laser-induced fluorescence detection. Anal Methods 4:414–420CrossRefGoogle Scholar
  28. 28.
    Amorini AM, Giorlandino C, Longo S, D’Urso S, Mesoraca A, Santoro ML, Picardi M, Gullotta S, Cignini P, Lazzarino D, Lazzarino G, Tavazzi B (2012) Metabolic profile of amniotic fluid as a biochemical tool to screen for inborn errors of metabolism and fetal anomalies. Mol Cell Biochem 359:205–216CrossRefPubMedGoogle Scholar
  29. 29.
    Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 3:829–837, 837a–837dCrossRefGoogle Scholar
  30. 30.
    Budzen S, Rymaszewska J (2013) The biological role of carnosine and its possible applications in medicine. Adv. Clin Exp Med 22:739–744Google Scholar
  31. 31.
    Cararo JH, Streck EL, Schuck PF, Ferreira Gda C (2015) Carnosine and related peptides: therapeutic potential in age-related disorders. Aging Dis 6:369–379CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Tsai SJ, Kuo WW, Liu WH, Yin MC (2010) Antioxidative and anti-inflammatory protection from carnosine in the striatum of MPTP-treated mice. J Agric Food Chem 58:11510–11516CrossRefPubMedGoogle Scholar
  33. 33.
    Fleisher-Berkovich S, Abramovitch-Dahan C, Ben-Shabat S, Apte R, Beit-Yannai E (2009) Inhibitory effect of carnosine and N-acetyl carnosine on LPS-induced microglial oxidative stress and inflammation. Peptides 30:1306–1312CrossRefPubMedGoogle Scholar
  34. 34.
    Metto EC, Evans K, Barney P, Culbertson AH, Gunasekara DB, Caruso G, Hulvey MK, da Silva JAF, Lunte SM, Culbertson CT (2013) An integrated microfluidic device for monitoring changes in nitric oxide production in single T lymphocyte (Jurkat) cells. Anal Chem 85:10188–10195CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Karkhaneh A, Ansari M, Emamgholipour S, Rafiee MH (2015) The effect of 17β-estradiol on gene expression of calcitonin gene-related peptide and some pro-inflammatory mediators in peripheral blood mononuclear cells from patients with pure menstrual migraine. Iran J Basic Med Sci 18:894–901PubMedPubMedCentralGoogle Scholar
  36. 36.
    Lacza Z, Snipes JA, Zhang J, Horváth EM, Figueroa JP, Szabó C, Busija DW (2003) Mitochondrial nitric oxide synthase is not eNOS, nNOS or iNOS. Free Radic Biol Med 35:1217–1228CrossRefPubMedGoogle Scholar
  37. 37.
    Takahashi S, Nakashima Y, Toda K (2009) Carnosine facilitates nitric oxide production in endothelial f-2 cells. Biol Pharm Bull 32:1836–1839CrossRefPubMedGoogle Scholar
  38. 38.
    Fresta CG, Hogard ML, Caruso G, Costa EE, Lazzarino G, Lunte SM (2017) Monitoring carnosine uptake by RAW 264.7 macrophage cells using microchip electrophoresis with fluorescence detection. Anal Methods 9:402–408CrossRefGoogle Scholar
  39. 39.
    Mauer J, Chaurasia B, Goldau J, Vogt MC, Ruud J, Nguyen KD, Theurich S, Hausen AC, Schmitz J, Brönneke HS, Estevez E, Allen TL, Mesaros A, Partridge L, Febbraio MA, Chawla A, Wunderlich FT, Brüning JC (2014) Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat Immunol 15:423–430CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ooi TC, Chan KM, Sharif R (2016) Zinc carnosine inhibits lipopolysaccharide-induced inflammatory mediators by suppressing NF-κb activation in Raw 264.7 macrophages, independent of the MAPKs signaling pathway. Biol Trace Elem Res 172:458–464CrossRefPubMedGoogle Scholar
  41. 41.
    Karabay AZ, Koc A, Ozkan T, Sunguroglu A, Buyukbingol Z (2010) Carnosine does not inhibit nitric oxide production in LPS-activated RAW 264.7 macrophages. Int Immunol Meet Abstr 22(Suppl 1 Pt 1):i48–i50. doi:10.1093/intimm/dxq080 Google Scholar
  42. 42.
    Huie RE, Padmaja S (1993) The reaction of no with superoxide. Free Radic Res Commun 18:195–199CrossRefPubMedGoogle Scholar
  43. 43.
    Pluta RM, Dejam A, Grimes G, Gladwin MT, Oldfield EH (2005) Nitrite infusions to prevent delayed cerebral vasospasm in a primate model of subarachnoid hemorrhage. JAMA 293:1477–1484CrossRefPubMedGoogle Scholar
  44. 44.
    Duranski MR, Greer JJ, Dejam A, Jaganmohan S, Hogg N, Langston W, Patel RP, Yet SF, Wang X, Kevil CG, Gladwin MT, Lefer DJ (2005) Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver. J Clin Invest 115:1232–1240CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Donzelli S, Switzer CH, Thomas DD, Ridnour LA, Espey MG, Isenberg JS, Tocchetti CG, King SB, Lazzarino G, Miranda KM, Roberts DD, Feelisch M, Wink DA (2006) The activation of metabolites of nitric oxide synthase by metals is both redox and oxygen dependent: a new feature of nitrogen oxide signaling. Antioxid Redox Signal 8:1363–1371CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Giuseppe Caruso
    • 1
    • 2
  • Claudia G. Fresta
    • 1
    • 2
  • Francisco Martinez-Becerra
    • 2
    • 3
  • Lopalco Antonio
    • 2
  • Ryan T. Johnson
    • 4
  • Richard P. S. de Campos
    • 1
    • 2
    • 5
  • Joseph M. Siegel
    • 1
    • 2
  • Manjula B. Wijesinghe
    • 1
    • 2
  • Giuseppe Lazzarino
    • 6
  • Susan M. Lunte
    • 1
    • 2
    • 4
  1. 1.Ralph N. Adams Institute for Bioanalytical ChemistryUniversity of KansasLawrenceUSA
  2. 2.Department of Pharmaceutical ChemistryUniversity of KansasLawrenceUSA
  3. 3.Immunology Core Laboratory of the Kansas Vaccine InstituteUniversity of KansasLawrenceUSA
  4. 4.Department of ChemistryUniversity of KansasLawrenceUSA
  5. 5.Department of ChemistryState University of CampinasCampinasBrazil
  6. 6.Division of Medical Biochemistry, Department of Biomedical and Biotechnological SciencesUniversity of CataniaCataniaItaly

Personalised recommendations