Molecular and Cellular Biochemistry

, Volume 431, Issue 1–2, pp 161–168 | Cite as

TGF-β1-miR-200a-PTEN induces epithelial–mesenchymal transition and fibrosis of pancreatic stellate cells

  • Min Xu
  • Guoying Wang
  • Hailang Zhou
  • Jing Cai
  • Ping Li
  • Meng Zhou
  • Ying Lu
  • Xiaomeng Jiang
  • Hongmei Huang
  • Youli Zhang
  • Aihua Gong
Article

Abstract

Although the function of miR-200a has been discussed in many cancers and fibrotic diseases, its role in pancreatic fibrosis is still poorly understood. In this study, we for the first time confirm that miR-200a attenuates TGF-β1-induced pancreatic stellate cells activation and extracellular matrix formation. First, we find that TGF-β1 induces activation and extracellular matrix (ECM) formation in PSCs, and the effects are blocked by the inhibitor of PI3K (LY294002). Furthermore, we identify that miR-200a is down-regulated in TGF-β1-activated PSCs, and up-regulation of miR-200a inhibits PSCs activation induced by TGF-β1. Meanwhile, TGF-β1 inhibits the expression of the epithelial marker E-cadherin, and increases the expression of mesenchymal markers vimentin, and the expression of ECM proteins a-SMA and collagen I, while miR-200a mimic reversed the above effects in PSCs, indicating that miR-200a inhibits TGF-β1-induced activation and epithelial–mesenchymal transition (EMT). In addition, overexpression of miR-200a promotes the expression of PTEN and decreases the expression of matrix proteins and attenuates phosphorylation of Akt and mTOR. Taken together, our study uncovers a novel mechanism that miR-200a attenuates TGF-β1-induced pancreatic stellate cells activation and ECM formation through inhibiting PTEN /Akt/mTOR pathway.

Keywords

MiR-200a TGF-β1 Epithelial–mesenchymal transition Pancreatic stellate cells PTEN/Akt/mTOR pathway 

Notes

Acknowledgements

This study was supported by Grants from the Natural Science Foundation of Jiangsu Province (BK20131247) and the Research Project of “169 Project” in Zhenjiang City.

Author Contributions

Aihua Gong and Min Xu conceived the idea and designed the experiments. Min Xu, Guoying Wang, and Hailang Zhou analyzed data and wrote the paper, and the other remaining authors collected data. Min Xu and Guoying Wang equally contributed to this work.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11010_2017_2988_MOESM1_ESM.tif (384 kb)
Supplementary material 1 (TIF 383 KB)

References

  1. 1.
    Witt H, Apte MV, Keim V, Wilson JS (2007) Chronic pancreatitis: challenges and advances in pathogenesis, genetics, diagnosis, and therapy. Gastroenterology 132:1557–1573. doi: 10.1053/j.gastro.2007.03.001 CrossRefPubMedGoogle Scholar
  2. 2.
    Madro A, Kurzepa J, Celinski K, Slomka M, Czechowska G, Kurzepa J, Kazmierak W, Buszewicz G, Ciesielka M, Madro R (2016) Effects of renin-angiotensin system inhibitors on fibrosis in patients with alcoholic chronic pancreatitis. J Physiol Pharmacol 67:103–110PubMedGoogle Scholar
  3. 3.
    Li N, Li Y, Li Z, Huang C, Yang Y, Lang M, Cao J, Jiang W, Xu Y, Dong J and Ren H (2016) Hypoxia inducible factor 1 (HIF-1) recruits macrophage to activate pancreatic stellate cells in pancreatic ductal adenocarcinoma. Int J Mol Sci. doi: 10.3390/ijms17060799 Google Scholar
  4. 4.
    Piao RL, Xiu M, Brigstock DR, Gao RP (2015) An immortalized rat pancreatic stellate cell line RP-2 as a new cell model for evaluating pancreatic fibrosis, inflammation and immunity. Hepatobiliary Pancreat Dis Int 14:651–659CrossRefPubMedGoogle Scholar
  5. 5.
    Lawson JS, Syme HM, Wheeler-Jones CP, Elliott J (2016) Urinary active transforming growth factor beta in feline chronic kidney disease. Vet J 214:1–6. doi: 10.1016/j.tvjl.2016.02.004 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Liu M, Zeng X, Wang J, Fu Z, Wang J, Liu M, Ren D, Yu B, Zheng L, Hu X, Shi W and Xu J (2016) Immunomodulation by mesenchymal stem cells in treating human autoimmune disease-associated lung fibrosis. Stem Cell Res Ther 7:63. doi: 10.1186/s13287-016-0319-y CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Latella G, Vetuschi A, Sferra R, Speca S, Gaudio E (2013) Localization of alphanubeta6 integrin-TGF-beta1/Smad3, mTOR and PPARgamma in experimental colorectal fibrosis. Eur J Histochem 57:e40. doi: 10.4081/ejh.2013.e40 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    ten Dijke P, Hill CS (2004) New insights into TGF-beta-Smad signalling. Trends Biochem Sci 29:265–273. doi: 10.1016/j.tibs.2004.03.008 CrossRefPubMedGoogle Scholar
  9. 9.
    Wang T, Chen SS, Chen R, Yu DM, Yu P (2015) Reduced beta 2 glycoprotein I improve diabetic nephropathy via inhibiting TGF-beta1-p38 MAPK pathway. Int J Clin Exp Med 8:6852–6865PubMedPubMedCentralGoogle Scholar
  10. 10.
    Li Y, Chen D, Hao FY, Zhang KJ (2016) Targeting TGF-beta1 and AKT signal on growth and metastasis of anaplastic thyroid cancer cell in vivo. Eur Rev Med Pharmacol Sci 20:2581–2587PubMedGoogle Scholar
  11. 11.
    Qi F, Cai P, Liu X, Peng M, Si G (2015) Adenovirus-mediated P311 inhibits TGF-beta1-induced epithelial-mesenchymal transition in NRK-52E cells via TGF-beta1-Smad-ILK pathway. Biosci Trends 9:299–306. doi: 10.5582/bst.2015.01129 CrossRefPubMedGoogle Scholar
  12. 12.
    Manickam N, Patel M, Griendling KK, Gorin Y and Barnes JL (2014) RhoA/Rho kinase mediates TGF-beta1-induced kidney myofibroblast activation through Poldip2/Nox4-derived reactive oxygen species. Am J Physiol Renal Physiol 307:F159-71. doi: 10.1152/ajprenal.00546.2013 CrossRefPubMedGoogle Scholar
  13. 13.
    Piersma B, Bank RA and Boersema M (2015) Signaling in Fibrosis: TGF-beta, WNT, and YAP/TAZ Converge. Front Med 2:59. doi: 10.3389/fmed.2015.00059 CrossRefGoogle Scholar
  14. 14.
    Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99–110. doi: 10.1038/nrg2936 CrossRefPubMedGoogle Scholar
  15. 15.
    Yang S, Banerjee S, de Freitas A, Sanders YY, Ding Q, Matalon S, Thannickal VJ, Abraham E, Liu G (2012) Participation of miR-200 in pulmonary fibrosis. Am J Pathol 180:484–493. doi: 10.1016/j.ajpath.2011.10.005 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wang B, Koh P, Winbanks C, Coughlan MT, McClelland A, Watson A, Jandeleit-Dahm K, Burns WC, Thomas MC, Cooper ME, Kantharidis P (2011) miR-200a prevents renal fibrogenesis through repression of TGF-beta2 expression. Diabetes 60:280–287. doi: 10.2337/db10-0892 CrossRefPubMedGoogle Scholar
  17. 17.
    Bachem MG, Schneider E, Gross H, Weidenbach H, Schmid RM, Menke A, Siech M, Beger H, Grunert A, Adler G (1998) Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology 115:421–432CrossRefPubMedGoogle Scholar
  18. 18.
    Oruqaj G, Karnati S, Vijayan V, Kotarkonda LK, Boateng E, Zhang W, Ruppert C, Gunther A, Shi W, Baumgart-Vogt E (2015) Compromised peroxisomes in idiopathic pulmonary fibrosis, a vicious cycle inducing a higher fibrotic response via TGF-beta signaling. Proc Natl Acad Sci USA 112:E2048–E2057. doi: 10.1073/pnas.1415111112 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Cabello-Verrugio C, Santander C, Cofre C, Acuna MJ, Melo F, Brandan E (2012) The internal region leucine-rich repeat 6 of decorin interacts with low density lipoprotein receptor-related protein-1, modulates transforming growth factor (TGF)-beta-dependent signaling, and inhibits TGF-beta-dependent fibrotic response in skeletal muscles. J Biol Chem 287:6773–6787. doi: 10.1074/jbc.M111.312488 CrossRefPubMedGoogle Scholar
  20. 20.
    Hinz B, Gabbiani G, Chaponnier C (2002) The NH2-terminal peptide of alpha-smooth muscle actin inhibits force generation by the myofibroblast in vitro and in vivo. J Cell Biol 157:657–663. doi: 10.1083/jcb.200201049 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:349–363. doi: 10.1038/nrm809 CrossRefPubMedGoogle Scholar
  22. 22.
    O’Connor JW and Gomez EW (2014) Biomechanics of TGFbeta-induced epithelial-mesenchymal transition: implications for fibrosis and cancer. Clin Transl Med 3:23. doi: 10.1186/2001-1326-3-23 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kalluri R, Neilson EG (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112:1776–1784. doi: 10.1172/JCI20530 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Okada H, Danoff TM, Kalluri R and Neilson EG (1997) Early role of Fsp1 in epithelial-mesenchymal transformation. Am J Physiol 273:F563-74PubMedGoogle Scholar
  25. 25.
    Zhao YL, Zhu RT and Sun YL (2016) Epithelial-mesenchymal transition in liver fibrosis. Biomed Rep 4:269–274. doi: 10.3892/br.2016.578 PubMedPubMedCentralGoogle Scholar
  26. 26.
    Lee K, Nelson CM (2012) New insights into the regulation of epithelial-mesenchymal transition and tissue fibrosis. Int Rev. Cell Mol Biol 294:171–221. doi: 10.1016/B978-0-12-394305-7.00004-5 Google Scholar
  27. 27.
    Coelho RP, Yuelling LM, Fuss B, Sato-Bigbee C (2009) Neurotrophin-3 targets the translational initiation machinery in oligodendrocytes. Glia 57:1754–1764. doi: 10.1002/glia.20888 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Cully M, You H, Levine AJ, Mak TW (2006) Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6:184–192. doi: 10.1038/nrc1819 CrossRefPubMedGoogle Scholar
  29. 29.
    Kato M, Putta S, Wang M, Yuan H, Lanting L, Nair I, Gunn A, Nakagawa Y, Shimano H, Todorov I, Rossi JJ, Natarajan R (2009) TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol 11:881–889. doi: 10.1038/ncb1897 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhang YH, Zhang J, Song JN, Xu X, Cai JS, Zhou Y, Gao JG (2016) The PI3K-AKT-mTOR pathway activates recovery from general anesthesia. Oncotarget. doi: 10.18632/oncotarget.10172 Google Scholar
  31. 31.
    Liu DD, Han CC, Wan HF, He F, Xu HY, Wei SH, Du XH and Xu F (2016) Effects of inhibiting PI3K-Akt-mTOR pathway on lipid metabolism homeostasis in goose primary hepatocytes. Animal 10:1319–1327. doi: 10.1017/S1751731116000380 CrossRefPubMedGoogle Scholar
  32. 32.
    Iekushi K, Taniyama Y, Kusunoki H, Azuma J, Sanada F, Okayama K, Koibuchi N, Iwabayashi M, Rakugi H, Morishita R (2011) Hepatocyte growth factor attenuates transforming growth factor-beta-angiotensin II crosstalk through inhibition of the PTEN/Akt pathway. Hypertension 58:190–196. doi: 10.1161/HYPERTENSIONAHA.111.173013 CrossRefPubMedGoogle Scholar
  33. 33.
    Chau BN, Brenner DA (2011) What goes up must come down: the emerging role of microRNA in fibrosis. Hepatology 53:4–6. doi: 10.1002/hep.24071 CrossRefPubMedGoogle Scholar
  34. 34.
    Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428. doi: 10.1172/JCI39104 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Murakami Y, Toyoda H, Tanaka M, Kuroda M, Harada Y, Matsuda F, Tajima A, Kosaka N, Ochiya T, Shimotohno K (2011) The progression of liver fibrosis is related with overexpression of the miR-199 and 200 families. PLoS ONE 6:e16081. doi: 10.1371/journal.pone.0016081 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Min Xu
    • 1
  • Guoying Wang
    • 1
  • Hailang Zhou
    • 1
  • Jing Cai
    • 1
  • Ping Li
    • 1
  • Meng Zhou
    • 1
  • Ying Lu
    • 1
  • Xiaomeng Jiang
    • 1
  • Hongmei Huang
    • 1
  • Youli Zhang
    • 1
  • Aihua Gong
    • 2
    • 3
  1. 1.Department of Gastroenterology, Affiliated Hospital of Jiangsu UniversityJiangsu UniversityZhenjiangChina
  2. 2.Department of Cell Biology, School of MedicineJiangsu UniversityZhenjiangChina
  3. 3.Jiangsu UniversityZhenjiangChina

Personalised recommendations