Molecular and Cellular Biochemistry

, Volume 431, Issue 1–2, pp 161–168 | Cite as

TGF-β1-miR-200a-PTEN induces epithelial–mesenchymal transition and fibrosis of pancreatic stellate cells

  • Min Xu
  • Guoying Wang
  • Hailang Zhou
  • Jing Cai
  • Ping Li
  • Meng Zhou
  • Ying Lu
  • Xiaomeng Jiang
  • Hongmei Huang
  • Youli Zhang
  • Aihua Gong
Article

Abstract

Although the function of miR-200a has been discussed in many cancers and fibrotic diseases, its role in pancreatic fibrosis is still poorly understood. In this study, we for the first time confirm that miR-200a attenuates TGF-β1-induced pancreatic stellate cells activation and extracellular matrix formation. First, we find that TGF-β1 induces activation and extracellular matrix (ECM) formation in PSCs, and the effects are blocked by the inhibitor of PI3K (LY294002). Furthermore, we identify that miR-200a is down-regulated in TGF-β1-activated PSCs, and up-regulation of miR-200a inhibits PSCs activation induced by TGF-β1. Meanwhile, TGF-β1 inhibits the expression of the epithelial marker E-cadherin, and increases the expression of mesenchymal markers vimentin, and the expression of ECM proteins a-SMA and collagen I, while miR-200a mimic reversed the above effects in PSCs, indicating that miR-200a inhibits TGF-β1-induced activation and epithelial–mesenchymal transition (EMT). In addition, overexpression of miR-200a promotes the expression of PTEN and decreases the expression of matrix proteins and attenuates phosphorylation of Akt and mTOR. Taken together, our study uncovers a novel mechanism that miR-200a attenuates TGF-β1-induced pancreatic stellate cells activation and ECM formation through inhibiting PTEN /Akt/mTOR pathway.

Keywords

MiR-200a TGF-β1 Epithelial–mesenchymal transition Pancreatic stellate cells PTEN/Akt/mTOR pathway 

Supplementary material

11010_2017_2988_MOESM1_ESM.tif (384 kb)
Supplementary material 1 (TIF 383 KB)

References

  1. 1.
    Witt H, Apte MV, Keim V, Wilson JS (2007) Chronic pancreatitis: challenges and advances in pathogenesis, genetics, diagnosis, and therapy. Gastroenterology 132:1557–1573. doi:10.1053/j.gastro.2007.03.001 CrossRefPubMedGoogle Scholar
  2. 2.
    Madro A, Kurzepa J, Celinski K, Slomka M, Czechowska G, Kurzepa J, Kazmierak W, Buszewicz G, Ciesielka M, Madro R (2016) Effects of renin-angiotensin system inhibitors on fibrosis in patients with alcoholic chronic pancreatitis. J Physiol Pharmacol 67:103–110PubMedGoogle Scholar
  3. 3.
    Li N, Li Y, Li Z, Huang C, Yang Y, Lang M, Cao J, Jiang W, Xu Y, Dong J and Ren H (2016) Hypoxia inducible factor 1 (HIF-1) recruits macrophage to activate pancreatic stellate cells in pancreatic ductal adenocarcinoma. Int J Mol Sci. doi:10.3390/ijms17060799 Google Scholar
  4. 4.
    Piao RL, Xiu M, Brigstock DR, Gao RP (2015) An immortalized rat pancreatic stellate cell line RP-2 as a new cell model for evaluating pancreatic fibrosis, inflammation and immunity. Hepatobiliary Pancreat Dis Int 14:651–659CrossRefPubMedGoogle Scholar
  5. 5.
    Lawson JS, Syme HM, Wheeler-Jones CP, Elliott J (2016) Urinary active transforming growth factor beta in feline chronic kidney disease. Vet J 214:1–6. doi:10.1016/j.tvjl.2016.02.004 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Liu M, Zeng X, Wang J, Fu Z, Wang J, Liu M, Ren D, Yu B, Zheng L, Hu X, Shi W and Xu J (2016) Immunomodulation by mesenchymal stem cells in treating human autoimmune disease-associated lung fibrosis. Stem Cell Res Ther 7:63. doi:10.1186/s13287-016-0319-y CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Latella G, Vetuschi A, Sferra R, Speca S, Gaudio E (2013) Localization of alphanubeta6 integrin-TGF-beta1/Smad3, mTOR and PPARgamma in experimental colorectal fibrosis. Eur J Histochem 57:e40. doi:10.4081/ejh.2013.e40 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    ten Dijke P, Hill CS (2004) New insights into TGF-beta-Smad signalling. Trends Biochem Sci 29:265–273. doi:10.1016/j.tibs.2004.03.008 CrossRefPubMedGoogle Scholar
  9. 9.
    Wang T, Chen SS, Chen R, Yu DM, Yu P (2015) Reduced beta 2 glycoprotein I improve diabetic nephropathy via inhibiting TGF-beta1-p38 MAPK pathway. Int J Clin Exp Med 8:6852–6865PubMedPubMedCentralGoogle Scholar
  10. 10.
    Li Y, Chen D, Hao FY, Zhang KJ (2016) Targeting TGF-beta1 and AKT signal on growth and metastasis of anaplastic thyroid cancer cell in vivo. Eur Rev Med Pharmacol Sci 20:2581–2587PubMedGoogle Scholar
  11. 11.
    Qi F, Cai P, Liu X, Peng M, Si G (2015) Adenovirus-mediated P311 inhibits TGF-beta1-induced epithelial-mesenchymal transition in NRK-52E cells via TGF-beta1-Smad-ILK pathway. Biosci Trends 9:299–306. doi:10.5582/bst.2015.01129 CrossRefPubMedGoogle Scholar
  12. 12.
    Manickam N, Patel M, Griendling KK, Gorin Y and Barnes JL (2014) RhoA/Rho kinase mediates TGF-beta1-induced kidney myofibroblast activation through Poldip2/Nox4-derived reactive oxygen species. Am J Physiol Renal Physiol 307:F159-71. doi:10.1152/ajprenal.00546.2013 CrossRefPubMedGoogle Scholar
  13. 13.
    Piersma B, Bank RA and Boersema M (2015) Signaling in Fibrosis: TGF-beta, WNT, and YAP/TAZ Converge. Front Med 2:59. doi:10.3389/fmed.2015.00059 CrossRefGoogle Scholar
  14. 14.
    Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99–110. doi:10.1038/nrg2936 CrossRefPubMedGoogle Scholar
  15. 15.
    Yang S, Banerjee S, de Freitas A, Sanders YY, Ding Q, Matalon S, Thannickal VJ, Abraham E, Liu G (2012) Participation of miR-200 in pulmonary fibrosis. Am J Pathol 180:484–493. doi:10.1016/j.ajpath.2011.10.005 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wang B, Koh P, Winbanks C, Coughlan MT, McClelland A, Watson A, Jandeleit-Dahm K, Burns WC, Thomas MC, Cooper ME, Kantharidis P (2011) miR-200a prevents renal fibrogenesis through repression of TGF-beta2 expression. Diabetes 60:280–287. doi:10.2337/db10-0892 CrossRefPubMedGoogle Scholar
  17. 17.
    Bachem MG, Schneider E, Gross H, Weidenbach H, Schmid RM, Menke A, Siech M, Beger H, Grunert A, Adler G (1998) Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology 115:421–432CrossRefPubMedGoogle Scholar
  18. 18.
    Oruqaj G, Karnati S, Vijayan V, Kotarkonda LK, Boateng E, Zhang W, Ruppert C, Gunther A, Shi W, Baumgart-Vogt E (2015) Compromised peroxisomes in idiopathic pulmonary fibrosis, a vicious cycle inducing a higher fibrotic response via TGF-beta signaling. Proc Natl Acad Sci USA 112:E2048–E2057. doi:10.1073/pnas.1415111112 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Cabello-Verrugio C, Santander C, Cofre C, Acuna MJ, Melo F, Brandan E (2012) The internal region leucine-rich repeat 6 of decorin interacts with low density lipoprotein receptor-related protein-1, modulates transforming growth factor (TGF)-beta-dependent signaling, and inhibits TGF-beta-dependent fibrotic response in skeletal muscles. J Biol Chem 287:6773–6787. doi:10.1074/jbc.M111.312488 CrossRefPubMedGoogle Scholar
  20. 20.
    Hinz B, Gabbiani G, Chaponnier C (2002) The NH2-terminal peptide of alpha-smooth muscle actin inhibits force generation by the myofibroblast in vitro and in vivo. J Cell Biol 157:657–663. doi:10.1083/jcb.200201049 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:349–363. doi:10.1038/nrm809 CrossRefPubMedGoogle Scholar
  22. 22.
    O’Connor JW and Gomez EW (2014) Biomechanics of TGFbeta-induced epithelial-mesenchymal transition: implications for fibrosis and cancer. Clin Transl Med 3:23. doi:10.1186/2001-1326-3-23 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kalluri R, Neilson EG (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112:1776–1784. doi:10.1172/JCI20530 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Okada H, Danoff TM, Kalluri R and Neilson EG (1997) Early role of Fsp1 in epithelial-mesenchymal transformation. Am J Physiol 273:F563-74PubMedGoogle Scholar
  25. 25.
    Zhao YL, Zhu RT and Sun YL (2016) Epithelial-mesenchymal transition in liver fibrosis. Biomed Rep 4:269–274. doi:10.3892/br.2016.578 PubMedPubMedCentralGoogle Scholar
  26. 26.
    Lee K, Nelson CM (2012) New insights into the regulation of epithelial-mesenchymal transition and tissue fibrosis. Int Rev. Cell Mol Biol 294:171–221. doi:10.1016/B978-0-12-394305-7.00004-5 Google Scholar
  27. 27.
    Coelho RP, Yuelling LM, Fuss B, Sato-Bigbee C (2009) Neurotrophin-3 targets the translational initiation machinery in oligodendrocytes. Glia 57:1754–1764. doi:10.1002/glia.20888 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Cully M, You H, Levine AJ, Mak TW (2006) Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6:184–192. doi:10.1038/nrc1819 CrossRefPubMedGoogle Scholar
  29. 29.
    Kato M, Putta S, Wang M, Yuan H, Lanting L, Nair I, Gunn A, Nakagawa Y, Shimano H, Todorov I, Rossi JJ, Natarajan R (2009) TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol 11:881–889. doi:10.1038/ncb1897 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhang YH, Zhang J, Song JN, Xu X, Cai JS, Zhou Y, Gao JG (2016) The PI3K-AKT-mTOR pathway activates recovery from general anesthesia. Oncotarget. doi:10.18632/oncotarget.10172 Google Scholar
  31. 31.
    Liu DD, Han CC, Wan HF, He F, Xu HY, Wei SH, Du XH and Xu F (2016) Effects of inhibiting PI3K-Akt-mTOR pathway on lipid metabolism homeostasis in goose primary hepatocytes. Animal 10:1319–1327. doi:10.1017/S1751731116000380 CrossRefPubMedGoogle Scholar
  32. 32.
    Iekushi K, Taniyama Y, Kusunoki H, Azuma J, Sanada F, Okayama K, Koibuchi N, Iwabayashi M, Rakugi H, Morishita R (2011) Hepatocyte growth factor attenuates transforming growth factor-beta-angiotensin II crosstalk through inhibition of the PTEN/Akt pathway. Hypertension 58:190–196. doi:10.1161/HYPERTENSIONAHA.111.173013 CrossRefPubMedGoogle Scholar
  33. 33.
    Chau BN, Brenner DA (2011) What goes up must come down: the emerging role of microRNA in fibrosis. Hepatology 53:4–6. doi:10.1002/hep.24071 CrossRefPubMedGoogle Scholar
  34. 34.
    Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428. doi:10.1172/JCI39104 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Murakami Y, Toyoda H, Tanaka M, Kuroda M, Harada Y, Matsuda F, Tajima A, Kosaka N, Ochiya T, Shimotohno K (2011) The progression of liver fibrosis is related with overexpression of the miR-199 and 200 families. PLoS ONE 6:e16081. doi:10.1371/journal.pone.0016081 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Min Xu
    • 1
  • Guoying Wang
    • 1
  • Hailang Zhou
    • 1
  • Jing Cai
    • 1
  • Ping Li
    • 1
  • Meng Zhou
    • 1
  • Ying Lu
    • 1
  • Xiaomeng Jiang
    • 1
  • Hongmei Huang
    • 1
  • Youli Zhang
    • 1
  • Aihua Gong
    • 2
    • 3
  1. 1.Department of Gastroenterology, Affiliated Hospital of Jiangsu UniversityJiangsu UniversityZhenjiangChina
  2. 2.Department of Cell Biology, School of MedicineJiangsu UniversityZhenjiangChina
  3. 3.Jiangsu UniversityZhenjiangChina

Personalised recommendations