Molecular and Cellular Biochemistry

, Volume 426, Issue 1–2, pp 205–213 | Cite as

Oxygen exchange and energy metabolism in erythrocytes of Rett syndrome and their relationships with respiratory alterations

  • Chiara CiaccioEmail author
  • Donato Di Pierro
  • Diego Sbardella
  • Grazia Raffaella Tundo
  • Paolo Curatolo
  • Cinzia Galasso
  • Marta Elena Santarone
  • Maurizio Casasco
  • Paola Cozza
  • Alessio Cortelazzo
  • Marcello Rossi
  • Claudio De Felice
  • Joussef Hayek
  • Massimo Coletta
  • Stefano Marini


Rett syndrome (RTT) is a neurodevelopmental disorder, mainly affecting females, which is associated to a mutation on the methyl-CpG-binding protein 2 gene. In the pathogenesis and progression of classic RTT, red blood cell (RBC) morphology has been shown to be an important biosensor for redox imbalance and chronic hypoxemia. Here we have evaluated the impact of oxidation and redox imbalance on several functional properties of RTT erythrocytes. In particular, we report for the first time a stopped-flow measurement of the kinetics of oxygen release by RBCs and the analysis of the intrinsic affinity of the hemoglobin (Hb). According to our experimental approach, RBCs from RTT patients do not show any intrinsic difference with respect to those from healthy controls neither in Hb’s oxygen-binding affinity nor in O2 exchange processes at 37 °C. Therefore, these factors do not contribute to the observed alteration of the respiratory function in RTT patients. Moreover, the energy metabolism of RBCs, from both RTT patients and controls, was evaluated by ion-pairing HPLC method and related to the level of malondialdehyde and to the oxidative radical scavenging capacity of red cells. Results have clearly confirmed significant alterations in antioxidant defense capability, adding important informations concerning the high-energy compound levels in RBCs of RTT subjects, underlying possible correlations with inflammatory tissue alterations.


Rett syndrome Erythrocytes Oxidative stress Hemoglobin Oxygen affinity Energy metabolism 



Rett syndrome


Red blood cell




Oxidative stress


Plasmatic non-protein-bound iron








Reactive oxygen species scavenging capacity


Adenosine triphosphate


Adenosine diphosphate


Adenosine monophosphate


Nicotinamide adenine dinucleotide


Nicotinamide adenine dinucleotide phosphate hydrogen


Nicotinamide adenine dinucleotide hydrogen



This work has been partially supported by the Federazione Medicina Sportiva Italiana (FMSI) and Associazione ProRett Siena.


  1. 1.
    Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U et al (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188CrossRefPubMedGoogle Scholar
  2. 2.
    Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST et al (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320:1224–1229CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Mari F, Azimonti S, Bertani I, Bolognese F, Colombo E et al (2005) CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early-onset seizure variant of Rett syndrome. Hum Mol Genet 14:1935–1946CrossRefPubMedGoogle Scholar
  4. 4.
    Ariani F, Hayek G, Rondinella D, Artuso R, Mencarelli MA et al (2008) FOXG1 is responsible for the congenital variant of Rett syndrome. Am J Hum Genet 83:89–93CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Glaze DG (2005) Neurophysiology of Rett syndrome. J Child Neurol 20:740–746CrossRefPubMedGoogle Scholar
  6. 6.
    Chahrour M, Zoghbi HY (2007) The Story of Rett Syndrome: from clinic to neurobiology. Neuron 56:422–437CrossRefPubMedGoogle Scholar
  7. 7.
    De Felice C, Guazzi G, Rossi M, Ciccoli L, Signorini C et al (2010) Unrecognized lung disease in classic Rett syndrome: a physiologic and high-resolution CT imaging study. Chest 138:386–392CrossRefPubMedGoogle Scholar
  8. 8.
    Johnson CM, Cui N, Zhong W, Oginsky MF, Jiang C (2015) Breathing abnormalities in a female mouse model of Rett syndrome. J Physiol Sci 65:451–459CrossRefPubMedGoogle Scholar
  9. 9.
    Katz DM, Dutschmann M, Ramirez JM, Hilaire G (2009) Breathing disorders in Rett syndrome: progressive neurochemical dysfunction in the respiratory network after birth. Respir Physiol Neurobiol 168:101–108CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ramirez JM, Ward CS, Neul JL (2013) Breathing challenges in Rett syndrome: lessons learned from humans and animal models. Respir Physiol Neurobiol 189:280–287CrossRefPubMedGoogle Scholar
  11. 11.
    Kerr AM, Armstrong DD, Prescott RJ, Doyle D, Kearney DL (1997) Rett syndrome: analysis of deaths in the British survey. Eur Child Adolesc Psychiatry 6(Suppl 1):71–74PubMedGoogle Scholar
  12. 12.
    De Felice C, Ciccoli L, Leoncini S, Signorini C, Rossi M et al (2009) Systemic oxidative stress in classic Rett syndrome. Free Radic Biol Med 47:440–448CrossRefPubMedGoogle Scholar
  13. 13.
    Pecorelli A, Ciccoli L, Signorini C, Leoncini S, Giardini A et al (2011) Increased levels of 4HNE-protein plasma adducts in Rett syndrome. Clin Biochem 44:368–371CrossRefPubMedGoogle Scholar
  14. 14.
    Hamburger A, Gillberg C, Palm A, Hagberg B (1992) Elevated CSF glutamate in Rett syndrome. Neuropediatrics 23:212–213CrossRefGoogle Scholar
  15. 15.
    Leoncini S, De Felice C, Signorini C, Pecorelli A, Durand T et al (2011) Oxidative stress in Rett syndrome: natural history, genotype, and variants. Redox Rep 16:145–153CrossRefPubMedGoogle Scholar
  16. 16.
    Signorini C, Leoncini S, De Felice C, Pecorelli A, Meloni I, et al. (2014) Redox imbalance and morphological changes in skin fibroblasts in typical Rett syndrome. Oxid Med Cell Longev. p. 195935Google Scholar
  17. 17.
    Grosser E, Hirt U, Janc OA, Menzfeld C, Fischer M et al (2012) Oxidative burden and mitochondrial dysfunction in a mouse model of Rett syndrome. Neurobiol Dis 48:102–114CrossRefPubMedGoogle Scholar
  18. 18.
    Robinson L, Guy J, McKay L, Brockett E, Spike RC et al (2012) Morphological and functional reversal of phenotypes in a mouse model of Rett syndrome. Brain 135:2699–2710CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Guy J, Gan J, Selfridge J, Cobb S, Bird A (2007) Reversal of neurological defects in a mouse model of Rett syndrome. Science 315:1143–1147CrossRefPubMedGoogle Scholar
  20. 20.
    De Felice C, Della Ragione F, Signorini C, Leoncini S, Pecorelli A et al (2014) Oxidative brain damage in Mecp2-mutant murine models of Rett syndrome. Neurobiol Dis 68:66–77CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tropea D, Giacometti E, Wilson NR, Beard C, McCurry C et al (2009) Partial reversal of Rett syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci USA 106:2029–2034CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ciccoli L, De Felice C, Paccagnini E, Leoncini S, Pecorelli A et al (2012) Morphological changes and oxidative damage in Rett Syndrome erythrocytes. Biochim Biophys Acta 1820:511–520CrossRefPubMedGoogle Scholar
  23. 23.
    Ciccoli L, De Felice C, Leoncini S, Signorini C, Cortelazzo A et al (2015) Red blood cells in Rett syndrome: oxidative stress, morphological changes and altered membrane organization. Biol Chem 396:1233–1240CrossRefPubMedGoogle Scholar
  24. 24.
    Di Pierro D, Tavazzi B, Lazzarino G, Giardina B (1992) Malondialdehyde is a biochemical marker of peroxidative damage in the isolated repurfesed rat heart. Mol Cell Biochem 116:193–196CrossRefPubMedGoogle Scholar
  25. 25.
    Coletta M, Giardina B, Amiconi G, Gualtieri P, Benedetti PA et al (1985) Kinetics of the reaction of intraerythrocytic haemoglobin by single cell microspectroscopy: effect of shape and osmolarity. FEBS Lett 190:217–220CrossRefPubMedGoogle Scholar
  26. 26.
    Vandegriff KD, Olson JS (1984) The kinetics of O2 release by human red blood cells in the presence of external sodium dithionite. J Biol Chem 259(20):12609–12618PubMedGoogle Scholar
  27. 27.
    Giardina B, Amiconi G (1981) Measurement of binding of gaseous and nongaseous ligands to hemoglobins by conventional spectrophotometric procedures. Meth Enzymol 76:417–427CrossRefPubMedGoogle Scholar
  28. 28.
    Lazzarino G, Di Pierro D, Tavazzi B, Cerroni L, Giardina B (1991) Simultaneous separation of malondialdehyde, ascorbic acid and adenite nucleotide derivatives from biological samples by ion pairing high- performance liquid chromatography. Anal Biochem 197:191–196CrossRefPubMedGoogle Scholar
  29. 29.
    Tavazzi B, Di Pierro D, Amorini AM, Fazzina G, Tuttobene M et al (2000) Energy metabolism and lipid peroxidation of human erythrocytes as a function of increased oxidative stress. Eur J Biochem 267:684–689CrossRefPubMedGoogle Scholar
  30. 30.
    Tavazzi B, Amorini AM, Fazzina G, Di Pierro D, Tuttobene M et al (2001) Oxidative stress induces impairment of human erythrocyte energy metabolism through the oxygen radical-mediated direct activation of AMP-deaminase. J Biol Chem 276:48083–48092PubMedGoogle Scholar
  31. 31.
    Di Pierro D, Tavazzi B, Perno CP, Bartolini M, Balestra E et al (1995) An ion pairing high performance liquid chromatography method for the simulateneous determination of nucleotides, deoxynucleotides, nicotinic coenzymes, oxypurines, nucleosides and bases. Anal Biochem 231:407–412CrossRefPubMedGoogle Scholar
  32. 32.
    Cao G, Alessio HM, Cutler RG (1993) Oxygen-radical absorbance capacity assay for antioxidants. Free Radic Biol Med 14:303–311CrossRefPubMedGoogle Scholar
  33. 33.
    Cardatoli E, Dotti MT, Hayek G, Zappella M, Federico A (1999) Studies on mitochondrial pathogenesis of Rett syndrome: ultrastructural data from skin and muscle biopsies and mutational analysis at mtDNA nucleotides 10463 and 2835. J Submicrosc Cytol Pathol 31:301–304Google Scholar
  34. 34.
    Gold WA, Williamson SL, Kaur S, Hargreaves IP, Land JM et al (2014) Mitochondrial dysfunction in the skeletal muscle of a mouse model of Rett syndrome (RTT): implications for the disease phenotype. Mitochondrion 15:10–17CrossRefPubMedGoogle Scholar
  35. 35.
    Derecki NC, Privman E, Kipnis J (2010) Rett syndrome and other autism spectrum disorders-brain diseases of immune malfunction? Mol Psychiatry 15:355–363 Review CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Jiang S, Li C, McRae G, Lykken E, Sevilla J et al (2014) MeCP2 reinforces STAT3 signaling and the generation of effector CD4+ T cells by promoting miR-124-mediated suppression of SOCS5. Sci Signal 7(316):ra25CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lee B, Cao R, Choi YS, Cho HY, Rhee AD et al (2009) The CREB/CRE transcriptional pathway: protection against oxidative stress-mediated neuronal cell death. J Neurochem 108:1251–1265CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Pereira LO, Nabinger PM, Strapasson AC, Nardin P, Gonçalves CA et al (2009) Long-term effects of environmental stimulation following hypoxia–ischemia on the oxidative state and BDNF levels in rat hippocampus and frontal cortex. Brain Res 1247:188–195CrossRefPubMedGoogle Scholar
  39. 39.
    Minetti M, Leto TH, Malorni W (2008) Radical generation and alterations of erythrocyte integrity as bioindicators of diagnostic or prognostic value in COPD? Antioxid Redox Signal 10:829–836CrossRefPubMedGoogle Scholar
  40. 40.
    Rossi V, Leoncini S, Signorini C, Buonocore G, Paffetti P et al (2006) Oxidative stress and autologous immunoglobulin G binding to band 3 dimers in newborn erythrocytes. Free Radic Biol Med 40:907–915CrossRefPubMedGoogle Scholar
  41. 41.
    Sierra C, Vilaseca MA, Brandi N, Artuch R, Mira A et al (2001) Oxidative stress in Rett syndrome. Brain Dev 1(Suppl):S236–S239CrossRefGoogle Scholar
  42. 42.
    Kerr AM (1992) A review of the respiratory disorder in the Rett syndrome. Brain Dev 14(Suppl):S43–S45PubMedGoogle Scholar
  43. 43.
    Julu PO, Kerr AM, Apartopoulos F, Al-Rawas S, Engerström IW et al (2001) Characterization of breathing and associated central autonomic dysfunction in the Rett disorder. Arch Dis Child 85:29–37CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    De Felice C, Rossi M, Leoncini S, Chisci G, Signorini C et al (2014) Inflammatory lung disease in Rett syndrome. Mediators Inflamm 2014:560120CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ciccoli L, Signorini C, Alessandrini C, Ferrali M, Comporti M (1994) Iron release, lipid peroxidation, and morphological alterations of erythrocytes exposed to acrolein and phenylhydrazine. Exp Mol Pathol 60:108–118CrossRefPubMedGoogle Scholar
  46. 46.
    Bobrowska-Hagerstrand M, Hagerstrand H, Iglic A (1998) Membrane skeleton and red blood cell vesiculation at low pH. Biochim Biophys Acta 1371:123–128CrossRefPubMedGoogle Scholar
  47. 47.
    Vandegriff KD, Olson JS (1984) Morphological and physiological factors affecting oxygen uptake and release by red blood cells. J Biol Chem 259:12619–12627PubMedGoogle Scholar
  48. 48.
    Ciaccio C, Coletta A, De Sanctis G, Marini S, Coletta M (2008) Cooperativity and allostery in haemoglobin function. IUBMB Life 60:112–123CrossRefPubMedGoogle Scholar
  49. 49.
    Agalakova NI, Gusev GP (2012) Fluoride induces oxidative stress and ATP depletion in the rat erythrocytes in vitro. Environ Toxicol Pharmacol 34:334–337CrossRefPubMedGoogle Scholar
  50. 50.
    Rodríguez J, Di Pierro D, Gioia M, Monaco S, Delgado R et al (2006) Effects of a natural extract from Mangifera indica L, and its active compound, mangiferin, on energy state and lipid peroxidation of red blood cells. Biochim Biophys Acta 1760:1333–1342CrossRefPubMedGoogle Scholar
  51. 51.
    Benesch RE, Benesch R, Kwong S, McCord JM (1986) Binding of diphosphoglycerate and ATP to oxyhemoglobin dimmers. J Mol Biol 190:481–485CrossRefPubMedGoogle Scholar
  52. 52.
    Cortelazzo A, De Felice C, Guerranti R, Leoncini R, Barducci A et al (2016) Erythrocyte cytoskeletal-plasma membrane protein network in Rett syndrome: effects of ω-3 polyunsaturated fatty acids. Curr Proteomics 12:217–226CrossRefGoogle Scholar
  53. 53.
    Huang TW, Kochukov MY, Ward CS, Merritt J, Thomas K et al (2016) Progressive changes in a distributed neural circuit underlie breathing abnormalities in mice lacking MeCP2. J Neurosci 36:5572–5586CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Signorini C, De Felice C, Leoncini S, Durand T, Galano JM et al (2014) Altered erythrocyte membrane fatty acid profile in typical Rett syndrome: effects of omega-3 polyunsaturated fatty acid supplementation. Prostaglandins Leukot Essent Fatty Acids 91:183–193CrossRefPubMedGoogle Scholar
  55. 55.
    Chakraborty S, Balakotaiah V, Bidani A (2004) Diffusing capacity reexamined: relative roles of diffusion and chemical reaction in red cell uptake of O2, CO, CO2, and NO. J Appl Physiol 97:2284–2302CrossRefPubMedGoogle Scholar
  56. 56.
    Forster RE, Fowler WS, Bates DV (1954) Considerations on the uptake of carbon monoxide by the lungs. J Clin Invest. 33:1128–1134CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Chiara Ciaccio
    • 1
    Email author
  • Donato Di Pierro
    • 1
  • Diego Sbardella
    • 1
  • Grazia Raffaella Tundo
    • 1
  • Paolo Curatolo
    • 2
  • Cinzia Galasso
    • 2
  • Marta Elena Santarone
    • 2
  • Maurizio Casasco
    • 3
  • Paola Cozza
    • 1
  • Alessio Cortelazzo
    • 4
  • Marcello Rossi
    • 5
  • Claudio De Felice
    • 6
  • Joussef Hayek
    • 7
  • Massimo Coletta
    • 1
  • Stefano Marini
    • 1
  1. 1.Department of Clinical Sciences and Translational MedicineUniversity of Roma Tor VergataRomeItaly
  2. 2.Department of Systems MedicineUniversity Hospital of Rome Tor VergataRomeItaly
  3. 3.Federazione Medico Sportiva ItalianaRomeItaly
  4. 4.Department of Medical BiotechnologiesUniversity of SienaSienaItaly
  5. 5.Respiratory Pathophysiology and Rehabilitation UnitUniversity Hospital, AOUSSienaItaly
  6. 6.Neonatal Intensive Care UnitUniversity Hospital, AOUSSienaItaly
  7. 7.Child Neuropsychiatry UnitUniversity Hospital, AOUSSienaItaly

Personalised recommendations