Advertisement

Molecular and Cellular Biochemistry

, Volume 424, Issue 1–2, pp 35–43 | Cite as

Lymphocyte genotoxicity and protective effect of Calyptranthes tricona (Myrtaceae) against H2O2-induced cell death in MCF-7 cells

  • Débora Mara Kich
  • Shanna Bitencourt
  • Bruna Caye
  • Dalana Faleiro
  • Celso Alves
  • Joana Silva
  • Susete Pinteus
  • Michelle Mergener
  • Fernanda Majolo
  • Aline Augusti Boligon
  • Roberto Christ Vianna Santos
  • Rui Pedrosa
  • Claucia Fernanda Volken de Souza
  • Márcia Inês Goettert
Article

Abstract

Calyptranthes tricona is a species (Myrtaceae) native to South Brazil. Plants belonging to this family are folkloric used for analgesia, inflammation, and infectious diseases. However, little is known about the toxic potential of C. tricona. The present study aimed to evaluate the antioxidant activity of C. tricona ethanol and hexane leaf extracts, as well as verify their effect on human lymphocytes and MCF-7 cells. The extracts were subjected to preliminary phytochemical screening, antioxidant activity using DPPH and ORAC methods. Genotoxic and mutagenic effects in cultured human lymphocytes were assessed using the comet assay and the micronucleus assay, respectively. In addition, cell viability by MTT assay and fluorometric analysis of mitochondrial potential and caspases-9 activity were performed in order to verify the possible effects of both extracts on H2O2-induced cell death of MCF-7 cells. Our findings revealed that the phenol content and the antioxidant activity were only present in the ethanol extract. Also, the phytochemical screening presented steroids, triterpenoids, condensed tannins, and flavones as the main compounds. However, both extracts were capable of inducing concentration-dependent DNA damage in human lymphocytes. When treating MCF-7 cells with the extracts, both of them inhibited MCF-7 cell death in response to oxidative stress through a decrease of mitochondrial depolarization and caspases-9 activity. Thus, our results need to be considered in future in vitro and in vivo studies of C. tricona effects. In the meanwhile, we recommend caution in the acute/chronic use of this homemade preparation for medicinal purpose.

Keywords

Calyptranthes tricona Genotoxicity Human lymphocytes, MCF-7, cytoprotection 

Notes

Acknowledgments

We thank Ms. Andréa Horst from the Physiology Department of Universidade Federal do Rio Grande do Sul (UFRGS) and Dr. Adriane Pozzobon from Centro Universitário UNIVATES for technical assistance. This work was supported by Centro Universitário UNIVATES and the National Counsel of Technological and Scientific Development (CNPq). DMK, DF, and SB are the recipients of Master grants and a postdoctoral grant from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes), respectively.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Mendis S, Fukino K, Cameron A, Laing R, Filipe A Jr, Khatib O, Leowski J, Ewen M (2007) The availability and affordability of selected essential medicines for chronic diseases in six low- and middle-income countries. Bull World Health Organ 85:279–288CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cordell GA, Colvard MD (2012) Natural products and traditional medicine: turning on a paradigm. J Nat Prod 75:514–525. doi: 10.1021/np200803m CrossRefPubMedGoogle Scholar
  3. 3.
    Dastmalchi K, Flores G, Wu SB, Ma C, Dabo AJ, Whalen K, Reynertson KA, Foronjy RF, JM DA, Kennelly EJ (2012) Edible Myrciaria vexator fruits: bioactive phenolics for potential COPD therapy. Bioorg Med Chem 20:4549–4555. doi: 10.1016/j.bmc.2012.05.013 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Takao LK, Imatomi M, Gualtieri SC (2015) Antioxidant activity and phenolic content of leaf infusions of Myrtaceae species from Cerrado (Brazilian Savanna). Braz J Biol 75:948–952. doi: 10.1590/1519-6984.03314 CrossRefPubMedGoogle Scholar
  5. 5.
    de Figueiroa EO, da Silva LCN, de Melo CM, Neves JK, da Silva NH, Pereira VR, Correia MT (2013) Evaluation of antioxidant, immunomodulatory, and cytotoxic action of fractions from Eugenia uniflora L. and Eugenia malaccensis L.: correlation with polyphenol and flavanoid content. Sci World J. doi: 10.1155/2013/125027 Google Scholar
  6. 6.
    Stefanello ME, Pascoal AC, Salvador MJ (2011) Essential oils from neotropical Myrtaceae: chemical diversity and biological properties. Chem Biodivers 8:73–94. doi: 10.1002/cbdv.201000098 CrossRefPubMedGoogle Scholar
  7. 7.
    Borges LL, Conceicao EC, Silveira D (2014) Active compounds and medicinal properties of Myrciaria genus. Food Chem 153:224–233. doi: 10.1016/j.foodchem.2013.12.064 CrossRefPubMedGoogle Scholar
  8. 8.
    Thornhill AH, Ho SY, Kulheim C, Crisp MD (2015) Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny. Mol Phylogenet Evol 93:29–43. doi: 10.1016/j.ympev.2015.07.007 CrossRefPubMedGoogle Scholar
  9. 9.
    Sagrillo MR, Garcia LF, de Souza Filho OC, Duarte MM, Ribeiro EE, Cadona FC, da Cruz IB (2015) Tucuma fruit extracts (Astrocaryum aculeatum Meyer) decrease cytotoxic effects of hydrogen peroxide on human lymphocytes. Food Chem 173:741–748. doi: 10.1016/j.foodchem.2014.10.067 CrossRefPubMedGoogle Scholar
  10. 10.
    Bonoli M, Verardo V, Marconi E, Caboni MF (2004) Antioxidant phenols in barley (Hordeum vulgare L.) flour: comparative spectrophotometric study among extraction methods of free and bound phenolic compounds. J Agric Food Chem 52:5195–5200. doi: 10.1021/jf040075c CrossRefPubMedGoogle Scholar
  11. 11.
    da Silva Brum E, da Rosa Moreira L, da Silva AR, Boligon AA, Carvalho FB, Athayde ML, Brandao R, Oliveira SM (2016) Tabernaemontana catharinensis ethyl acetate fraction presents antinociceptive activity without causing toxicological effects in mice. J Ethnopharmacol. doi: 10.1016/j.jep.2016.06.036 Google Scholar
  12. 12.
    Mensor LL, Menezes FS, Leitao GG, Reis AS, dos Santos TC, Coube CS, Leitao SG (2001) Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother Res 15:127–130CrossRefPubMedGoogle Scholar
  13. 13.
    Dávalos A, Gómez-Cordovés C, Bartolomé B (2004) Extending applicability of the oxygen radical absorbance capacity (ORAC-fluorescein) assay. J Agric Food Chem 52:48–54CrossRefPubMedGoogle Scholar
  14. 14.
    Turkez H, Aydin E, Geyikoglu F, Cetin D (2015) Genotoxic and oxidative damage potentials in human lymphocytes after exposure to terpinolene in vitro. Cytotechnology 67:409–418. doi: 10.1007/s10616-014-9698-z CrossRefPubMedGoogle Scholar
  15. 15.
    Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191CrossRefPubMedGoogle Scholar
  16. 16.
    Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455:81–95CrossRefPubMedGoogle Scholar
  17. 17.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefPubMedGoogle Scholar
  18. 18.
    RCoreTeam (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  19. 19.
    Tian T, Olson S, Whitacre JM, Harding A (2011) The origins of cancer robustness and evolvability. Integr Biol (Camb) 3:17–30. doi: 10.1039/c0ib00046a CrossRefGoogle Scholar
  20. 20.
    Wink M (2015) Modes of action of herbal medicines and plant secondary metabolites. Medicines. doi: 10.3390/medicines2030251 Google Scholar
  21. 21.
    Dinic J, Podolski-Renic A, Stankovic T, Bankovic J, Pesic M (2015) New approaches with natural product drugs for overcoming multidrug resistance in cancer. Curr Pharm Des 21:5589–5604CrossRefPubMedGoogle Scholar
  22. 22.
    Menut C, Bessiere JM, Ntalani H, Verin P, Henriques AT, Limberger R (2000) Two chromene derivatives from Calyptranthes tricona. Phytochemistry 53:975–979CrossRefPubMedGoogle Scholar
  23. 23.
    Fu X-B, Wang X-F, Chen J-N, Wu D-W, Li T, Shen X-C, Qin J-K (2015) Synthesis, fluorescence properties, and antiproliferative potential of several 3-Oxo-3H-benzo[f]chromene-2-carboxylic acid derivatives. Molecules 20:18565CrossRefPubMedGoogle Scholar
  24. 24.
    Salem M, Marzouk M, El-Kazak A (2016) Synthesis and characterization of some new coumarins with in vitro antitumor and antioxidant activity and high protective effects against DNA damage. Molecules 21:249CrossRefPubMedGoogle Scholar
  25. 25.
    Salvador MJ, de Lourenco CC, Andreazza NL, Pascoal AC, Stefanello ME (2011) Antioxidant capacity and phenolic content of four Myrtaceae plants of the south of Brazil. Nat Prod Commun 6:977–982PubMedGoogle Scholar
  26. 26.
    Amensour M, Sendra E, Abrini J, Bouhdid S, Perez-Alvarez JA, Fernandez-Lopez J (2009) Total phenolic content and antioxidant activity of myrtle (Myrtus communis) extracts. Nat Prod Commun 4:819–824PubMedGoogle Scholar
  27. 27.
    Tawaha K, Alali FQ, Gharaibeh M, Mohammad M, El-Elimat T (2007) Antioxidant activity and total phenolic content of selected Jordanian plant species. Food Chem 104:1372–1378. doi: 10.1016/j.foodchem.2007.01.064 CrossRefGoogle Scholar
  28. 28.
    Saeed N, Khan MR, Shabbir M (2012) Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement Altern Med 12:221. doi: 10.1186/1472-6882-12-221 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wang WH, Tyan YC, Chen ZS, Lin CG, Yang MH, Yuan SS, Tsai WC (2014) Evaluation of the antioxidant activity and antiproliferative effect of the jaboticaba (Myrciaria cauliflora) seed extracts in oral carcinoma cells. Biomed Res Int 2014:185946. doi: 10.1155/2014/185946 PubMedPubMedCentralGoogle Scholar
  30. 30.
    Araldi RP, de Melo TC, Mendes TB, de Sa Junior PL, Nozima BH, Ito ET, de Carvalho RF, de Souza EB, de Cassia Stocco R (2015) Using the comet and micronucleus assays for genotoxicity studies: a review. Biomed Pharmacother 72:74–82. doi: 10.1016/j.biopha.2015.04.004 CrossRefPubMedGoogle Scholar
  31. 31.
    Avishai N, Rabinowitz C, Rinkevich B (2003) Use of the comet assay for studying environmental genotoxicity: comparisons between visual and image analyses. Environ Mol Mutagen 42:155–165. doi: 10.1002/em.10189 CrossRefPubMedGoogle Scholar
  32. 32.
    de Souza Filho OC, Sagrillo MR, Garcia LF, Machado AK, Cadona F, Ribeiro EE, Duarte MM, Morel AF, da Cruz IB (2013) The in vitro genotoxic effect of Tucuma (Astrocaryum aculeatum), an Amazonian fruit rich in carotenoids. J Med Food 16:1013–1021. doi: 10.1089/jmf.2012.0287 CrossRefPubMedGoogle Scholar
  33. 33.
    Nicholls DG (2004) Mitochondrial membrane potential and aging. Aging Cell 3:35–40CrossRefPubMedGoogle Scholar
  34. 34.
    McIlwain DR, Berger T, Mak TW (2013) Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 5:a008656. doi: 10.1101/cshperspect.a008656 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Tor YS, Yazan LS, Foo JB, Wibowo A, Ismail N, Cheah YK, Abdullah R, Ismail M, Ismail IS, Yeap SK (2015) Induction of apoptosis in MCF-7 cells via oxidative stress generation, mitochondria-dependent and caspase-independent pathway by ethyl acetate extract of Dillenia suffruticosa and its chemical profile. PLoS One. doi: 10.1371/journal.pone.0127441 PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Débora Mara Kich
    • 1
  • Shanna Bitencourt
    • 1
  • Bruna Caye
    • 1
  • Dalana Faleiro
    • 1
  • Celso Alves
    • 2
  • Joana Silva
    • 2
  • Susete Pinteus
    • 2
  • Michelle Mergener
    • 3
  • Fernanda Majolo
    • 4
  • Aline Augusti Boligon
    • 5
  • Roberto Christ Vianna Santos
    • 6
  • Rui Pedrosa
    • 2
  • Claucia Fernanda Volken de Souza
    • 7
  • Márcia Inês Goettert
    • 1
  1. 1.Laboratório de Cultura de Células, Programa de Pós-graduação em BiotecnologiaCentro Universitário UNIVATESLajeadoBrazil
  2. 2.Marine Resources Research Group (GIRM)ESTM, Polytechnic Institute of LeiriaPenichePortugal
  3. 3.Centro Universitário UNIVATESLajeadoBrazil
  4. 4.Laboratório Celular e Molecular. Faculdade de MedicinaPontifícia Universidade Católica do Rio Grande do Sul (PUCRS)Porto AlegreBrazil
  5. 5.Department of Industrial Pharmacy, Phytochemical Research LaboratoryFederal University of Santa MariaSanta MariaBrazil
  6. 6.Department of Microbiology and Parasitology, Oral Microbiology Research LaboratoryFederal University of Santa MariaSanta MariaBrazil
  7. 7.Laboratório de Biotecnologia de Alimentos, Programa de Pós-graduação em BiotecnologiaCentro Universitário UNIVATESRSLajeadoBrazil

Personalised recommendations