Advertisement

Molecular and Cellular Biochemistry

, Volume 423, Issue 1–2, pp 187–196 | Cite as

The protein-interaction network with functional roles in tumorigenesis, neurodegeneration, and aging

  • Jarmila Nahálková
Article

Abstract

The present review summarizes the knowledge about a protein-interaction network, which includes proteins with significant functions in the mechanisms of aging and age-related diseases. All the detected interacting proteins TPPII, p53, MYBBP1A, CDK2 and SIRT7, SIRT6, and CD147 are suitable for the development of antitumor therapeutics and treatments for diseases of aging. TPPII and SIRT6 directly affect glucose metabolism which drive malignant growth. In addition, SIRT6 activators are attractive candidates for Alzheimer’s disease (AD) due to the protection effect of SIRT6 overexpression from DNA damage. TPPII activity exhibits a decreasing effect on mTOR signaling, and its requirement for the degradation of Aβ peptides in the human fibroblasts suggests that it has dual functions in tumorigenesis and AD-related pathology. Likewise, the direct promotion of the invasiveness of breast epithelial cells and the contribution to the Aβ degradation by stimulating the matrix metalloproteinases production suggest a double functional role for CD147. An association of the partial portion of cellular CD147 to γ-secretase further supports the functional relation to AD pathology. The animal and cellular models with downregulated or knockout TPPII, p53, SIRT6, SIRT7, and MYBBP1A expression levels illustrate similar functions of the interacting proteins. They demonstrate similar effects on the length of life span, premature aging, and lipid metabolism. The presented protein-interaction network is relevant to the discoveries of the mechanisms of tumorigenesis, aging, and neurodegeneration.

Keywords

TPPII P53 MYBBP1A SIRT7 SIRT6 CD147 

Notes

Acknowledgments

Försäkringskassan financially supported the work on this manuscript. The funding source did not have any role in the planning, interpretation of the presented information and in the making publishing decisions.

References

  1. 1.
    McKay RM, McKay JP, Suh JM, Avery L, Graff JM (2007) Tripeptidyl peptidase II promotes fat formation in a conserved fashion. EMBO Rep 8:1183–1189CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Firat E, Tsurumi C, Gaedicke S, Huai J, Niedermann G (2009) Tripeptidyl peptidase II plays a role in the radiation response of selected primary cell types but not based on nuclear translocation and p53 stabilization. Cancer Res 69:3325–3331CrossRefPubMedGoogle Scholar
  3. 3.
    Huai J, Firat E, Nil A, Million D et al (2008) Activation of cellular death programs associated with immunosenescence-like phenotype in TPPII knockout mice. Proc Natl Acad Sci USA 105:5177–5182CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hilbi H, Puro RJ, Zychlinsky A (2000) Tripeptidyl peptidase II promotes maturation of caspase-1 in Shigella flexneri-induced macrophage apoptosis. Infect Immun 68:5502–5508CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zhang J, Wong J, Gao G, Luo H (2011) Tripeptidyl peptidase II serves as an alternative to impaired proteasome to maintain viral growth in the host cells. FEBS Lett 585:261–265CrossRefPubMedGoogle Scholar
  6. 6.
    Wiemhoefer A, Stargardt A, van der Linden WA, Renner MC et al (2015) Tripeptidyl peptidase II mediates levels of nuclear phosphorylated ERK1 and ERK2. Mol Cell Proteomics. doi: 10.1074/mcp.M114.043331 PubMedPubMedCentralGoogle Scholar
  7. 7.
    Stavropoulou V, Vasquez V, Cereser B, Freda E, Masucci MG (2006) TPPII promotes genetic instability by allowing the escape from apoptosis of cells with activated mitotic checkpoints. Biochem Biophys Res Commun 346:415–425CrossRefPubMedGoogle Scholar
  8. 8.
    Nahálková J (2015) Novel protein–protein interactions of TPPII, p53, and SIRT7. Mol Cell Biochem. doi: 10.1007/s11010-015-2507-y PubMedGoogle Scholar
  9. 9.
    Nahálková J, Tomkinson B (2014) TPPII, MYBBP1A, and CDK2 form a protein–protein interaction network. Arch Biochem Biophys 564:128–135CrossRefPubMedGoogle Scholar
  10. 10.
    Duensing S, Darr S, Cuevas R, Melquiot N et al (2010) Tripeptidyl Peptidase II Is required for c-MYC-induced centriole overduplication and a novel therapeutic target in c-MYC-associated neoplasms. Genes Cancer 1:883–892CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Akaogi K, Ono W, Hayashi Y, Kishimoto H, Yanagisawa J (2013) MYBBP1A suppresses breast cancer tumorigenesis by enhancing the p53 dependent anoikis. BMC Cancer 13:65–77CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Owen HR, Elser M, Cheung E, Gersbach M et al (2007) MYBBP1a is a novel repressor of NF-kappaB. J Mol Biol 366:725–736CrossRefPubMedGoogle Scholar
  13. 13.
    Perrera C, Colombo R, Valsasina B, Carpinelli P (2010) Identification of Myb-binding protein 1A (MYBBP1A) as a novel substrate for aurora B kinase. J Biol Chem 285:11775–11785CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Owa T, Yoshino H, Yoshimatsu K, Nagasu T (2001) Cell cycle regulation in the G1 phase: a promising target for the development of new chemotherapeutic anticancer agents. Curr Med Chem 8:1487–1503CrossRefPubMedGoogle Scholar
  15. 15.
    Gavioli R, Frisan T, Vertuani S, Bornkamm GW, Masucci MG (2001) C-Myc overexpression activates alternative pathways for intracellular proteolysis in lymphoma cells. Nat Cell Biol 3:283–288CrossRefPubMedGoogle Scholar
  16. 16.
    Ford E, Voit R, Liszt G, Magin C et al (2006) Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev 20:1075–1080CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Barber MF, Michishita-Kioi E, Xi Y, Tasselli L et al (2012) SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487:114–118PubMedPubMedCentralGoogle Scholar
  18. 18.
    Karim MF, Yoshizawa T, Sato Y, Sawa T et al (2013) Inhibition of H3K18 deacetylation of Sirt7 by Myb-binding protein 1a (Mybbp1a). Biochem Biophys Res Commun 441:157–163CrossRefPubMedGoogle Scholar
  19. 19.
    Polyakova O, Borman S, Grimley R, Vamathevan et al (2012) Identification of novel interacting partners of sirtuin 6. PLoS One. doi: 10.1371/journal.pone.0051555 Google Scholar
  20. 20.
    Huttlin EL, Ting L, Bruckner RJ, Gebreab F et al (2015) The BioPlex network: a systematic exploration of the human interactome. Cell 162:425–440CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yurchenko V, Constant S, Eisenmesser E, Bukrinsky M (2010) Cyclophilin-CD147 interactions: a new target for anti-inflammatory therapeutics. Clin Exp Immunol 160:305–317CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sompallae R, Stavropoulou V, Houde M, Masucci MG (2008) The MAPK signaling cascade is a central hub in the regulation of cell cycle, apoptosis and cytoskeleton remodeling by tripeptidyl-peptidase II. Gene Regul Syst Biol 2:253–265Google Scholar
  23. 23.
    Grass GD, Tolliver LB, Bratoeva M, Toole BP (2013) CD147, CD44, and the epidermal growth factor receptor (EGFR) signaling pathway cooperate to regulate breast epithelial cell invasiveness. J Biol Chem 288:26089–26104CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Nahálková J, Volkmann I, Aoki M, Winblad B et al (2010) CD147, a γ-secretase associated protein is upregulated in Alzheimer’s disease brain, and its cellular trafficking is affected by presenilin-2. Neurochem Int 56:67–76CrossRefPubMedGoogle Scholar
  25. 25.
    Winkler E, Hobson S, Fukumori A, Dümpelfeld B et al (2009) Purification, pharmacological modulation, and biochemical characterization of interactors of endogenous human γ-secretase. Biochemistry 48:1183–1197CrossRefPubMedGoogle Scholar
  26. 26.
    Sompallae R, Stavropoulou V, Houde M, Masucci MG (2008) The MAPK signaling cascade is a central hub in the regulation of cell cycle, apoptosis and cytoskeleton remodeling by tripeptidyl-peptidase II. Gene Regul Syst Biol 2:253–265Google Scholar
  27. 27.
    Marchenko ND, Zaika A, Moll UM (2000) Death signal-induced localization of p53 protein to mitochondria: a potential role in apoptotic signaling. J Biol Chem 275:16202–16212CrossRefPubMedGoogle Scholar
  28. 28.
    Baba M, Inoue M, Itoh K, Nishizawa Y (2008) Blocking CD147 induces cell death in cancer cells through impairment of glycolytic energy metabolism. Biochem Biophys Res Commun 374:111–116CrossRefPubMedGoogle Scholar
  29. 29.
    Mori S, Bernardi R, Laurent A, Resnati M et al (2012) Myb-binding protein 1A (MYBBP1A) is essential for early embryonic development, controls cell cycle and mitosis and acts as a tumor suppressor. PLoS One 7:1–14Google Scholar
  30. 30.
    Lu W, Zhang Y, McDonald DO, Jing H et al (2014) Dual proteolytic pathways govern glycolysis and immune competence. Cell 159:1578–1590CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Tsai YC, Greco TM, Cristea IM (2014) Sirtuin 7 plays a role in ribosome biogenesis and protein synthesis. Mol Cell Proteomics 13:73–83CrossRefPubMedGoogle Scholar
  32. 32.
    Araki S, Izumiya Y, Rokutanda T, Ianni A et al (2015) Sirt7 contributes to myocardial tissue repair by maintaining transforming growth factor-β signaling pathway. Circulation 132:1081–1093CrossRefPubMedGoogle Scholar
  33. 33.
    Liang XH, Jackson S, Seaman M, Brown K et al (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–676CrossRefPubMedGoogle Scholar
  34. 34.
    Qu X, Yu J, Bhagat G, Furuya N et al (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112:1809–1820CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Zappavigna S, Luce A, Vitale G, Merola N et al (2013) Autophagic cell death: a new frontier in cancer research. Adv Biosci Biotechnol 4:250–262CrossRefGoogle Scholar
  36. 36.
    Stavropoulou V, Xie J, Henriksson M, Tomkinson B et al (2005) Mitotic infidelity and centrosome duplication errors in cells overexpressing tripeptidyl-peptidase II. Cancer Res 65:1361–1368CrossRefPubMedGoogle Scholar
  37. 37.
    Neganova I, Vilella F, Atkinson SP, Lloret M et al (2011) An important role for CDK2 in G1 to S checkpoint activation and DNA damage response in human embryonic stem cells. Stem Cells 29:651–659CrossRefPubMedGoogle Scholar
  38. 38.
    Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A et al (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452:230–233CrossRefPubMedGoogle Scholar
  39. 39.
    Anastasiou D, Yu Y, Israelsen WJ, Jiang JK et al (2012) Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol 8:839–847CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Steták A, Veress R, Ovádi J, Csermely P et al (2007) Nuclear translocation of the tumor marker pyruvate kinase M2 induces programmed cell death. Cancer Res 67:1602–1608CrossRefPubMedGoogle Scholar
  41. 41.
    Zhong L, D’Urso A, Toiber D, Sebastian C et al (2010) The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1α. Cell 140:280–293CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Sebastián C, Mostoslavsky R (2015) The role of mammalian sirtuins in cancer metabolism. Semin Cell Dev Biol 43:33–42CrossRefPubMedGoogle Scholar
  43. 43.
    Sebastián C, Zwaans BM, Silberman DM, Gymrek M (2012) The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 151:1185–1199CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Acuña Sanhueza GA, Faller L, George B, Koffler J et al (2012) Opposing function of MYBBP1A in proliferation and migration of head and neck squamous cell carcinoma cells. BMC Cancer 12:72–81CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Zou W, Yang H, Hou X, Zhang W et al (2007) Inhibition of CD147 gene expression via RNA interference reduces tumor cell invasion, tumorigenicity and increases chemosensitivity to paclitaxel in HO-8910 pm cells. Cancer Lett 248:211–218CrossRefPubMedGoogle Scholar
  46. 46.
    Schneiderhan W, Scheler M, Holzmann KH, Marx M (2009) CD147 silencing inhibits lactate transport and reduces the malignant potential of pancreatic cancer cells in vivo and in vitro models. Gut 58:1391–1398CrossRefPubMedGoogle Scholar
  47. 47.
    Hubbi ME, Hu H, Kshitiz, Gilkes DM, Semenza GL (2013) Sirtuin-7 inhibits the activity of hypoxia-inducible factors. J Biol Chem 288:20768–20775CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Yu H, Ye W, Wu J, Meng X et al (2014) Overexpression of sirt7 exhibits oncogenic property and serves as a prognostic factor in colorectal cancer. Clin Cancer Res 20:3434–3445CrossRefPubMedGoogle Scholar
  49. 49.
    Zhang S, Chen P, Huang Z, Hu X et al (2015) Sirt7 promotes gastric cancer growth and inhibits apoptosis by epigenetically inhibiting miR-34a. Sci Rep 5:9787–9795CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Geng Q, Peng H, Chen F, Luo R, Li R (2015) High expression of Sirt7 served as a predictor of adverse outcome in breast cancer. Int J Clin Exp Pathol 8:1938–1945PubMedPubMedCentralGoogle Scholar
  51. 51.
    Singh S, Kumar PU, Thakur S, Kiran S et al (2015) Expression/localization patterns of sirtuins (SIRT1, SIRT2, and SIRT7) during the progression of cervical cancer and effects of sirtuin inhibitors on growth of cervical cancer cells. Tumour Biol 36:6159–6171CrossRefPubMedGoogle Scholar
  52. 52.
    Malik S, Villanova L, Tanaka S, Aonuma M et al (2015) SIRT7 inactivation reverses metastatic phenotypes in epithelial and mesenchymal tumors. Sci Rep 5:9841–9850CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Huber K, Superti-Furga G (2011) After the grape rush: sirtuins as epigenetic drug targets in neurodegenerative disorders. Bioorg Med Chem 19:3616–3624CrossRefPubMedGoogle Scholar
  54. 54.
    Jung ES, Choi H, Song H, Hwang YJ et al (2016) p53-dependent SIRT6 expression protects Aβ42-induced DNA damage. Sci Rep. doi: 10.1038/srep25628 Google Scholar
  55. 55.
    Levine AJ, Hu W, Feng Z (2006) The P53 pathway: what questions remain to be explored? Cell Death Differ 13:1027–1036CrossRefPubMedGoogle Scholar
  56. 56.
    Vetrivel KS, Zhang X, Meckler X, Cheng H et al (2008) Evidence that CD147 modulation of beta-amyloid (Abeta) levels is mediated by extracellular degradation of secreted Abeta. J Biol Chem 283:19489–19498CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Naruhashi K, Kadomatsu K, Igakura T, Fan QW et al (1997) Abnormalities of sensory and memory functions in mice lacking Bsg gene. Biochem Biophys Res Commun 236:733–737CrossRefPubMedGoogle Scholar
  58. 58.
    Oláh J, Vincze O, Virók D, Simon D et al (2011) Interactions of pathological hallmark proteins: tubulin polymerization promoting protein/p25, β-amyloid, and α-synuclein. J Biol Chem 286:34088–34100CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Verdaguer E, García-Jordà E, Canudas AM, Domínguez E et al (2002) Kainic acid-induced apoptosis in cerebellar granule neurons: an attempt at cell cycle re-entry. NeuroReport 13:413–416CrossRefPubMedGoogle Scholar
  60. 60.
    Kruman II, Wersto RP, Cardozo-Pelaez F, Smilenov L et al (2004) Cell cycle activation linked to neuronal cell death initiated by DNA damage. Neuron 41:549–561CrossRefPubMedGoogle Scholar
  61. 61.
    Driver JA (2012) Understanding the link between cancer and neurodegeneration. J Geriatr Oncol 3:58–67CrossRefGoogle Scholar
  62. 62.
    Copani A, Condorelli F, Caruso A, Vancheri CA et al (1999) Mitotic signaling by beta-amyloid causes neuronal death. FASEB J 13:2225–2234PubMedGoogle Scholar
  63. 63.
    Raspe MA (2011) Peptidases in antigen processing and neurodegenerative diseases. http://www.dare.uva.nl/document/2/87421. Accessed 3 May 2016
  64. 64.
    Spilman P, Podlutskaya N, Hart MJ, Debnath J et al (2010) Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer’s disease. PLoS One. doi: 10.1371/journal.pone.0009979 PubMedPubMedCentralGoogle Scholar
  65. 65.
    Caccamo A, Maldonado MA, Majumder S, Medina DX et al (2011) Naturally secreted amyloid-beta increases mammalian target of rapamycin (mTOR) activity via a PRAS40-mediated mechanism. J Biol Chem 286:8924–8932CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Rose C, Vargas F, Facchinetti P, Bourgeat P et al (1996) Characterization and inhibition of a cholecystokinin-inactivating serine peptidase. Nature 380:403–409CrossRefPubMedGoogle Scholar
  67. 67.
    Noble F, Roques BP (2006) Cholecystokinin peptides in brain function. In Lajtha A, Lim R (eds) Handbook of neurochemistry and molecular neurobiology. 3rd edn. Springer, Berlin, Reference US, p 545–571Google Scholar
  68. 68.
    Facchinetti P, Rose C, Rostaing P, Triller A, Schwartz JC (1999) Immunolocalization of tripeptidyl peptidase II, a cholecystokinin-inactivating enzyme, in rat brain. Neuroscience 88:1225–1240CrossRefPubMedGoogle Scholar
  69. 69.
    Donehower LA (2002) Does p53 affect organismal aging? J Cell Physiol 192:23–33CrossRefPubMedGoogle Scholar
  70. 70.
    Ono W, Hayashi Y, Yokoyama W, Kuroda T et al (2014) The nucleolar protein Myb-binding protein 1A (MYBBP1A) enhances p53 tetramerization and acetylation in response to nucleolar disruption. J Biol Chem 289:4928–4940CrossRefPubMedGoogle Scholar
  71. 71.
    Kawahara TL, Michishita E, Adler AS, Damian M et al (2009) SIRT6 links histone H3 lysine 9 deacetylation to NF-κB-dependent gene expression and organismal life span. Cell 136:62–74CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    George B, Horn D, Bayo P, Zaoui K et al (2015) Regulation and function of Myb-binding protein 1A (MYBBP1A) in cellular senescence and pathogenesis of head and neck cancer. Cancer Lett 358:191–199CrossRefPubMedGoogle Scholar
  73. 73.
    Kida Y, Goligorsky MS (2016) Sirtuins, cell senescence, and vascular aging. Can J Cardiol. doi: 10.1016/j.cjca.2015.11.022 PubMedGoogle Scholar
  74. 74.
    Mostoslavsky R, Chua KF, Lombard DB, Pang WW et al (2006) Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124:315–329CrossRefPubMedGoogle Scholar
  75. 75.
    Michishita E, McCord RA, Berber E, Kioi M et al (2008) SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452:492–496CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Kanfi Y, Naiman S, Amir G, Peshti V et al (2012) The sirtuin SIRT6 regulates lifespan in male mice. Nature 483:218–221CrossRefPubMedGoogle Scholar
  77. 77.
    Li J, Xie H, Yi M, Peng L et al (2011) Expression of cyclophilin A and CD147 during skin aging. Zhong Nan Da Xue Xue Bao Yi Xu Ban 36:203–211Google Scholar
  78. 78.
    Huet E, Gabison E, Vallee B, Mougenot N et al (2015) Deletion of extracellular matrix metalloproteinase inducer/cd147 induces altered cardiac extracellular matrix remodeling in aging mice. J Physiol Pharmacol 66:355–366PubMedGoogle Scholar
  79. 79.
    Vakhrusheva O, Smolka C, Gajawada P, Kostin S et al (2008) Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res 102:703–710CrossRefPubMedGoogle Scholar
  80. 80.
    Liu JP, Chen R (2015) Stressed SIRT7: facing a crossroad of senescence and immortality. Clin Exp Pharmacol Physiol 42:567–569CrossRefPubMedGoogle Scholar
  81. 81.
    Hydbring P, Larsson LG (2010) Cdk2: a key regulator of the senescence control function of Myc. Aging (Albany NY) 2:244–250CrossRefGoogle Scholar
  82. 82.
    Ohtani N, Mann DJ, Hara E (2009) Cellular senescence: its role in tumor suppression and aging. Cancer Sci 100:792–797CrossRefPubMedGoogle Scholar
  83. 83.
    Vakhrusheva O, Braeuer D, Liu Z, Braun T, Bober E (2008) Sirt7-dependent inhibition of cell growth and proliferation might be instrumental to mediate tissue integrity during aging. J Physiol Pharmacol 59:201–212PubMedGoogle Scholar
  84. 84.
    Bond J, Haughton M, Blaydes J, Gire V et al (1996) Evidence that transcriptional activation by p53 plays a direct role in the induction of cellular senescence. Oncogene 13:2097–2104PubMedGoogle Scholar
  85. 85.
    Gire V, Wynford-Thomas D (1998) Reinitiation of DNA synthesis and cell division in senescent human fibroblasts by microinjection of anti-p53 antibodies. Mol Cell Biol 18:1611–1621CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Yoshizawa T, Karim MF, Sato Y, Senokuchi T et al (2014) SIRT7 controls hepatic lipid metabolism by regulating the ubiquitin-proteasome pathway. Cell Metab 19:712–721CrossRefPubMedGoogle Scholar
  87. 87.
    Cioffi M, Vallespinos-Serrano M, Trabulo SM, Fernandez-Marcos PJ et al (2015) MiR-93 controls adiposity via inhibition of Sirt7 and Tbx3. Cell Rep 12:1594–1605CrossRefPubMedGoogle Scholar
  88. 88.
    Stepensky P, Rensing-Ehl A, Gather R, Revel-Vilk S et al (2014) Early-onset Evans syndrome, immunodeficiency, and premature immunosenescence associated with tripeptidyl-peptidase II deficiency. Blood 125:753–761CrossRefPubMedGoogle Scholar
  89. 89.
    Vadasz Z, Haj T, Kessel A, Toubi E (2013) Age-related autoimmunity. BMC Med 11:94–97CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Medical Biochemistry and Microbiology (IMBIM), BMCUppsala UniversityUppsalaSweden

Personalised recommendations