Skip to main content
Log in

Adenosine monophosphate-activated protein kinase activation and suppression of inflammatory response by cell stretching in rabbit synovial fibroblasts

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Joint mobilization is known to be beneficial in osteoarthritis (OA) patients. This study aimed to investigate the effect of stretching on adenosine monophosphate-activated protein kinase (AMPK) activity and its role in modulating inflammation in rabbit synovial fibroblasts. Uniaxial stretching of isolated rabbit synovial fibroblasts for ten min was performed. Stretching-induced AMPK activation, its underlying mechanism, and its anti-inflammatory effect were investigated using Western blot. Static stretching at 20 % of initial length resulted in AMPK activation characterized by expression of phosphorylated AMPK and phosphorylated acetyl-Co A carboxylase. AMP-activated protein kinase phosphorylation peaked 1 h after stretching and declined toward resting activity. Using cell viability assays, static stretching did not appear to cause cellular damage. Activation of AMPK involves Ca2+ influx via a mechanosensitive L-type Ca2+ channel, which subsequently raises intracellular Ca2+ and activates AMPK via Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ). Interestingly, stretching suppressed TNFα-induced expression of COX-2, iNOS, and phosphorylated NF-κB. These effects were prevented by pretreatment with compound C, an AMPK inhibitor. These results suggest that mechanical stretching suppressed inflammatory responses in synovial fibroblasts via a L-type Ca2+-channel-CaMKKβ-AMPK-dependent pathway which may underlie joint mobilization’s ability to alleviate OA symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brooks P (2006) The burden of musculoskeletal disease—a global perspective. Clin Rheumatol 25:778–781

    Article  PubMed  Google Scholar 

  2. Felson DT (1987) Epidemiology of hip and knee osteoarthritis. Epidemiol Rev 10:1–28

    Google Scholar 

  3. Cooper C, Snow S, McAlindon TE, Kellingray S, Stuart B, Coggon D, Dieppe PA (2000) Risk factors for the incidence and progression of radiographic knee osteoarthritis. Arthritis Rheum 43:995–1000

    Article  CAS  PubMed  Google Scholar 

  4. Felson DT, Lawrence RC, Dieppe PA, Hirsch R, Helmick CG, Jordan JM, Kington RS, Lane NE, Nevitt MC, Zhang Y, Sowers M, McAlindon T, Spector TD, Poole AR, Yanovski SZ, Ateshian G, Sharma L, Buckwalter JA, Brandt KD, Fries JF (2000) Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med 133:635–646

    Article  CAS  PubMed  Google Scholar 

  5. Jordan K, Arden N, Doherty M, Bannwarth B, Bijlsma J, Dieppe P, Gunther K, Hauselmann H, Herrero-Beaumont G, Kaklamanis P (2003) EULAR recommendations 2003: an evidence based approach to the management of knee osteoarthritis: report of a task force of the standing committee for international clinical studies including therapeutic trials (ESCISIT). Ann Rheum Dis 62:1145–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Roddy E, Zhang W, Doherty M, Arden N, Barlow J, Birrell F, Carr A, Chakravarty K, Dickson J, Hay E (2005) Evidence-based recommendations for the role of exercise in the management of osteoarthritis of the hip or knee—the MOVE consensus. Rheumatology 44:67–73

    Article  CAS  PubMed  Google Scholar 

  7. Buchanan CI, Marsh RL (2001) Effects of long-term exercise on the biomechanical properties of the Achilles tendon of guinea fowl. J Appl Physiol 90:164–171

    CAS  PubMed  Google Scholar 

  8. Vailas AC, Zernicke RF, Matsuda J, Curwin S, Durivage J (1986) Adaptation of rat knee meniscus to prolonged exercise. J Appl Physiol 60:1031–1034

    CAS  PubMed  Google Scholar 

  9. Momberger TS, Levick JR, Mason RM (2005) Hyaluronan secretion by synoviocytes is mechanosensitive. Matrix Biol 24:510–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Momberger TS, Levick JR, Mason RM (2006) Mechanosensitive synoviocytes: a Ca2+–PKCα–MAP kinase pathway contributes to stretch-induced hyaluronan synthesis in vitro. Matrix Biol 25:306–316

    Article  CAS  PubMed  Google Scholar 

  11. Hill CL, Gale DG, Chaisson CE, Skinner K, Kazis L, Gale ME, Felson DT (2001) Knee effusions, popliteal cysts, and synovial thickening: association with knee pain in osteoarthritis. J Rheumatol 28:1330–1337

    CAS  PubMed  Google Scholar 

  12. Keen HI, Wakefield RJ, Grainger AJ, Hensor E, Emery P, Conaghan PG (2008) An ultrasonographic study of osteoarthritis of the hand: synovitis and its relationship to structural pathology and symptoms. Arthritis Care Res 59:1756–1763

    Article  Google Scholar 

  13. van de Loo FA, Joosten LA, van Lent PL, Arntz OJ, van den Berg WB (1995) Role of interleukin-1, tumor necrosis factor alpha, and interleukin-6 in cartilage proteoglycan metabolism and destruction. Effect of in situ blocking in murine antigen- and zymosan-induced arthritis. Arthritis Rheum 38:164–172

    Article  PubMed  Google Scholar 

  14. van den Berg WB, Joosten LA, van de Loo FA (1999) TNF alpha and IL-1 beta are separate targets in chronic arthritis. Clin Exp Rheumatol 17:S105–S114

    PubMed  Google Scholar 

  15. Lee A, Qiao Y, Grigoriev G, Chen J, Park-Min KH, Park SH, Ivashkiv LB, Kalliolias GD (2013) Tumor necrosis factor alpha induces sustained signaling and a prolonged and unremitting inflammatory response in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 65:928–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aupperle KR, Bennett BL, Boyle DL, Tak PP, Manning AM, Firestein GS (1999) NF-kappa B regulation by I kappa B kinase in primary fibroblast-like synoviocytes. J Immunol 163:427–433

    CAS  PubMed  Google Scholar 

  17. Aupperle KR, Yamanishi Y, Bennett BL, Mercurio F, Boyle DL, Firestein GS (2001) Expression and regulation of inducible IκB kinase (IKK-i) in human fibroblast-like synoviocytes. Cell Immunol 214:54–59

    Article  CAS  PubMed  Google Scholar 

  18. Mori L, Iselin S, De Libero G, Lesslauer W (1996) Attenuation of collagen-induced arthritis in 55-kDa TNF receptor type 1 (TNFR1)-IgG1-treated and TNFR1-deficient mice. J Immunol 157:3178–3182

    CAS  PubMed  Google Scholar 

  19. Jansen MJ, Viechtbauer W, Lenssen AF, Hendriks EJM, de Bie RA (2011) Strength training alone, exercise therapy alone, and exercise therapy with passive manual mobilisation each reduce pain and disability in people with knee osteoarthritis: a systematic review. J Physiother 57:11–20

    Article  PubMed  Google Scholar 

  20. Moss P, Sluka K, Wright A (2007) The initial effects of knee joint mobilization on osteoarthritic hyperalgesia. Manual therapy 12:109–118

    Article  PubMed  Google Scholar 

  21. Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LGD, Neumann D, Schlattner U, Wallimann T, Carlson M, Carling D (2003) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 13:2004–2008

    Article  CAS  PubMed  Google Scholar 

  22. Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, Frenguelli BG, Hardie DG (2005) Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2:9–19

    Article  CAS  PubMed  Google Scholar 

  23. Bai A, Ma AG, Yong M, Weiss CR, Ma Y, Guan Q, Bernstein CN, Peng Z (2010) AMPK agonist downregulates innate and adaptive immune responses in TNBS-induced murine acute and relapsing colitis. Biochem Pharmacol 80:1708–1717

    Article  CAS  PubMed  Google Scholar 

  24. Myerburg MM, King JD Jr, Oyster NM, Fitch AC, Magill A, Baty CJ, Watkins SC, Kolls JK, Pilewski JM, Hallows KR (2010) AMPK agonists ameliorate sodium and fluid transport and inflammation in cystic fibrosis airway epithelial cells. Am J Respir Cell Mol Biol 42:676

    Article  CAS  PubMed  Google Scholar 

  25. Zhao X, Zmijewski JW, Lorne E, Liu G, Park Y-J, Tsuruta Y, Abraham E (2008) Activation of AMPK attenuates neutrophil proinflammatory activity and decreases the severity of acute lung injury. Am J Physiol 295:L497–L504

    Article  CAS  Google Scholar 

  26. Hattori Y, Suzuki K, Hattori S, Kasai K (2006) Metformin inhibits cytokine-induced nuclear factor κB activation via AMP-activated protein kinase activation in vascular endothelial cells. Hypertension 47:1183–1188

    Article  CAS  PubMed  Google Scholar 

  27. Sag D, Carling D, Stout RD, Suttles J (2008) Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J Immunol 181:8633–8641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang Z, Kahn BB, Shi H, B-z Xue (2010) Macrophage α1 AMP-activated protein kinase (α1AMPK) antagonizes fatty acid-induced inflammation through SIRT1. J Biol Chem 285:19051–19059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lisignoli G, Grassi F, Piacentini A, Cocchini B, Remiddi G, Bevilacqua C, Facchini A (2001) Hyaluronan does not affect cytokine and chemokine expression in osteoarthritic chondrocytes and synoviocytes. Osteoarthr Cartil 9:161–168

    Article  CAS  PubMed  Google Scholar 

  30. Laurent TC, Fraser JR (1992) Hyaluronan. FASEB J 6:2397–2404

    CAS  PubMed  Google Scholar 

  31. Henderson B, Edwards JCW (1987) The synovial lining: in health and disease. Chapman and Hall, London

    Google Scholar 

  32. McDonald JN, Levick JR (1988) Morphology of surface synoviocytes in situ at normal and raised joint pressure, studied by scanning electron microscopy. Ann Rheum Dis 47:232–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sakamoto Y, Ishijima M, Kaneko H, Kurebayashi N, Ichikawa N, Futami I, Kurosawa H, Arikawa-Hirasawa E (2010) Distinct mechanosensitive Ca2+ influx mechanisms in human primary synovial fibroblasts. J Orthop Res 28:859–864

    CAS  PubMed  Google Scholar 

  34. Arora PD, Bibby KJ, McCulloch CA (1994) Slow oscillations of free intracellular calcium ion concentration in human fibroblasts responding to mechanical stretch. J Cell Physiol 161:187–200

    Article  CAS  PubMed  Google Scholar 

  35. Kim SA, Choi HC (2012) Metformin inhibits inflammatory response via AMPK–PTEN pathway in vascular smooth muscle cells. Biochem Biophys Res Commun 425:866–872

    Article  CAS  PubMed  Google Scholar 

  36. Shin MJ, Lee YP, Kim DW, An JJ, Jang SH, Cho S-M, Sheen S-H, Lee H-R, Kweon HY, Kang S-W (2010) Transduced PEP-1-AMPK inhibits the LPS-induced expression of COX-2 and iNOS in Raw264. 7 cells. BMB Rep 43:40–45

    Article  CAS  PubMed  Google Scholar 

  37. Pahl HL (1999) Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18:6853–6866

    Article  CAS  PubMed  Google Scholar 

  38. Ehrlich P, Lanyon L (2002) Mechanical strain and bone cell function: a review. Osteoporos Int 13:688–700

    Article  CAS  PubMed  Google Scholar 

  39. Haga JH, Li Y-SJ, Chien S (2007) Molecular basis of the effects of mechanical stretch on vascular smooth muscle cells. J Biomech 40:947–960

    Article  PubMed  Google Scholar 

  40. Kjær M (2004) Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev 84:649–698

    Article  PubMed  Google Scholar 

  41. Liu M, Post M (2000) Invited review: mechanochemical signal transduction in the fetal lung. J Appl Physiol 89:2078–2084

    CAS  PubMed  Google Scholar 

  42. Cheng J, Zhang J, Merched A, Zhang L, Zhang P, Truong L, Boriek AM, Du J (2007) Mechanical stretch inhibits oxidized low density lipoprotein-induced apoptosis in vascular smooth muscle cells by up-regulating integrin αVβ3 and stablization of PINCH-1. J Biol Chem 282:34268–34275

    Article  CAS  PubMed  Google Scholar 

  43. Hao J, Kim H-S, Choi W, Ha TS, Ahn H-Y, Kim C-H (2010) Mechanical stretch-induced protection against myocardial ischemia-reperfusion injury involves AMP-activated protein kinase. Korean J Physiol Pharmacol 14:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Iwata M, Hayakawa K, Murakami T, Naruse K, Kawakami K, Inoue-Miyazu M, Yuge L, Suzuki S (2007) Uniaxial cyclic stretch-stimulated glucose transport is mediated by a Ca2+-dependent mechanism in cultured skeletal muscle cells. Pathobiology 74:159–168

    Article  CAS  PubMed  Google Scholar 

  45. Guharay F, Sachs F (1984) Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol 352:685–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sokabe M, Sachs F, Jing ZQ (1991) Quantitative video microscopy of patch clamped membranes stress, strain, capacitance, and stretch channel activation. Biophys J 59:722–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kumar A, Lnu S, Malya R, Barron D, Moore J, Corry DB, Boriek AM (2003) Mechanical stretch activates nuclear factor-kappaB, activator protein-1, and mitogen-activated protein kinases in lung parenchyma: implications in asthma. FASEB J 17:1800–1811

    Article  CAS  PubMed  Google Scholar 

  48. Morisugi T, Tanaka Y, Kawakami T, Kirita T (2010) Mechanical stretch enhances NF-κB-dependent gene expression and poly (ADP-ribose) synthesis in synovial cells. J Biochem 147:633–644

    Article  CAS  PubMed  Google Scholar 

  49. Jensen TE, Rose AJ, Jørgensen SB, Brandt N, Schjerling P, Wojtaszewski JF, Richter EA (2007) Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction. Am J Physiol 292:E1308–E1317

    CAS  Google Scholar 

  50. Large RJ, Hollywood MA, Sergeant GP, Thornbury KD, Bourke S, Levick J, McHale NG (2010) Ionic currents in intimal cultured synoviocytes from the rabbit. Am J Physiol 299:C1180–C1194

    Article  CAS  Google Scholar 

  51. Kochukov MY, McNearney TA, Fu Y, Westlund KN (2006) Thermosensitive TRP ion channels mediate cytosolic calcium response in human synoviocytes. Am J Physiol 291:C424–C432

    Article  CAS  Google Scholar 

  52. Zhou W, Cao Q, Peng Y, Zhang QJ, Castrillon DH, DePinho RA, Liu ZP (2009) FoxO4 inhibits NF-κB and protects mice against colonic injury and inflammation. Gastroenterology 137:1403–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim H-J, Park K-G, Yoo E-K, Kim Y-H, Kim Y-N, Kim H-S, Kim HT, Park J-Y, Lee K-U, Jang WG (2007) Effects of PGC-1α on TNF-α-induced MCP-1 and VCAM-1 expression and NF-κB activation in human aortic smooth muscle and endothelial cells. Antioxid Redox Signal 9:301–307

    Article  CAS  PubMed  Google Scholar 

  54. Chandrasekar B, Boylston WH, Venkatachalam K, Webster NJ, Prabhu SD, Valente AJ (2008) Adiponectin blocks interleukin-18-mediated endothelial cell death via APPL1-dependent AMP-activated protein kinase (AMPK) activation and IKK/NF-κB/PTEN suppression. J Biol Chem 283:24889–24898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ogston AG, Stanier JE (1953) The physiological function of hyaluronic acid in synovial fluid; viscous, elastic and lubricant properties. J Physiol 119:244–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Day AJ, de la Motte CA (2005) Hyaluronan cross-linking: a protective mechanism in inflammation? Trends Immunol 26:637–643

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Professor Chumpol Pholpramool for useful comments and critical reading of the article manuscript. This study was financially supported by the National Research Council of Thailand (NRCT), the Thailand Research fund (TRF) through the Royal Golden Jubilee Ph.D. program (Grant No. PHD/0369/2552), Faculty of Science, Mahidol University, and the Office of the Higher Education Commission and Mahidol University under the National Research Universities Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varanuj Chatsudthipong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunanusornchai, W., Muanprasat, C. & Chatsudthipong, V. Adenosine monophosphate-activated protein kinase activation and suppression of inflammatory response by cell stretching in rabbit synovial fibroblasts. Mol Cell Biochem 423, 175–185 (2016). https://doi.org/10.1007/s11010-016-2835-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2835-6

Keywords

Navigation