Advertisement

Molecular and Cellular Biochemistry

, Volume 423, Issue 1–2, pp 165–174 | Cite as

Basic fibroblast growth factor activates β-catenin/RhoA signaling in pulmonary fibroblasts with chronic obstructive pulmonary disease in rats

  • Zhengxing GeEmail author
  • Bo Li
  • Xun Zhou
  • Yi Yang
  • Jun Zhang
Article

Abstract

Chronic obstructive pulmonary disease (COPD) is featured by aberrant extracellular matrix (ECM) deposition. Trigger of the β-catenin/RhoA pathway has been involved in aberrant ECM deposition in several diseases. We investigated WNT signaling activation in primary pulmonary fibroblasts of rats with and without COPD and the function of WNT signaling in pulmonary fibroblast. We evaluated the expression of WNT signaling and the role of β-catenin, using MRC-5 fibroblasts and primary lung fibroblasts of rats with and without COPD. Lung fibroblasts highly expressed mRNA of genes associated with WNT signaling. Treatment of MRC-5 fibroblasts using basic fibroblast growth factor (bFGF), a composition of the mucus in COPD patients, enhanced β-catenin, Wnt5a and RhoA expression. The expression in β-catenin, Wnt5a and RhoA induced by bFGF was higher in fibroblasts of rats with COPD than without COPD, whereas the basal expression was similar. bFGF also activated transcriptionally active and increased total β-catenin protein expression. Moreover, bFGF enhanced the expression of α-sm-actin and fibronectin, which was abrogated by β-catenin, Wnt5a and RhoA-specific adenovirus siRNA. The induction of active β-catenin and then fibronectin turnover in response to bFGF were markedly increased in pulmonary fibroblasts from rat with COPD. β-Catenin/RhoA pathway results in ECM deposition in lung fibroblasts and myofibroblasts differentiation. β-catenin/RhoA signaling induced by bFGF is promoted in lung fibroblasts from rats with COPD. The study indicated a crucial role of the WNT signaling in mediating fibroblast morphology and function in COPD.

Keywords

Chronic obstructive pulmonary disease β-Catenin Basic fibroblast growth factor MRC-5 fibroblasts 

Notes

Acknowledgments

This work was supported by grants from the Regional Fund of National Natural Science Foundation of China (ID: 81260599).

Compliance with ethical standards

Conflicts of interest

There are no other conflicts of interest.

References

  1. 1.
    Tamimi A, Serdarevic D, Hanania NA (2012) The effects of cigarette smoke on airway inflammation in asthma and COPD: therapeutic implications. Respir Med 106:319–328. doi: 10.1016/j.rmed.2011.11.003 CrossRefPubMedGoogle Scholar
  2. 2.
    Yoshida T, Tuder RM (2007) Pathobiology of cigarette smoke-induced chronic obstructive pulmonary disease. Physiol Rev 87:1047–1082. doi: 10.1152/physrev.00048.2006 CrossRefPubMedGoogle Scholar
  3. 3.
    Bartal M (2001) Health effects of tobacco use and exposure. Monaldi Arch Chest Dis 56:545–554PubMedGoogle Scholar
  4. 4.
    James AL, Wenzel S (2007) Clinical relevance of airway remodelling in airway diseases. Eur Respir J 30:134–155. doi: 10.1183/09031936.00146905 CrossRefPubMedGoogle Scholar
  5. 5.
    Rennard SI, Wachenfeldt K (2011) Rationale and emerging approaches for targeting lung repair and regeneration in the treatment of chronic obstructive pulmonary disease. Proc Am Thorac Soc 8:368–375. doi: 10.1513/pats.201102-019RM CrossRefPubMedGoogle Scholar
  6. 6.
    Hallgren O, Rolandsson S, Andersson-Sjoland A, Nihlberg K, Wieslander E, Kvist-Reimer M, Dahlback M, Eriksson L, Bjermer L, Erjefalt JS, Lofdahl CG, Westergren-Thorsson G (2012) Enhanced ROCK1 dependent contractility in fibroblast from chronic obstructive pulmonary disease patients. J Transl Med 10:171. doi: 10.1186/1479-5876-10-171 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zhang J, Wu L, Qu JM, Bai CX, Merrilees MJ, Black PN (2012) Pro-inflammatory phenotype of COPD fibroblasts not compatible with repair in COPD lung. J Cell Mol Med 16:1522–1532. doi: 10.1111/j.1582-4934.2011.01492.x CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kristan SS, Marc MM, Kern I, Flezar M, Suskovic S, Kosnik M, Korosec P (2012) Airway angiogenesis in stable and exacerbated chronic obstructive pulmonary disease. Scand J Immunol 75:109–114. doi: 10.1111/j.1365-3083.2011.02623.x CrossRefPubMedGoogle Scholar
  9. 9.
    Pavlisa G, Kusec V, Kolonic SO, Markovic AS, Jaksic B (2010) Serum levels of VEGF and bFGF in hypoxic patients with exacerbated COPD. Eur Cytokine Netw 21:92–98. doi: 10.1684/ecn.2010.0193 PubMedGoogle Scholar
  10. 10.
    Zanini A, Spanevello A, Baraldo S, Majori M, Della Patrona S, Gumiero F, Aiello M, Olivieri D, Saetta M, Chetta A (2014) Decreased maturation of dendritic cells in the central airways of COPD patients is associated with VEGF, TGF-beta and vascularity. Respiration 87:234–242. doi: 10.1159/000356749 CrossRefPubMedGoogle Scholar
  11. 11.
    Holz O, Zuhlke I, Jaksztat E, Muller KC, Welker L, Nakashima M, Diemel KD, Branscheid D, Magnussen H, Jorres RA (2004) Lung fibroblasts from patients with emphysema show a reduced proliferation rate in culture. Eur Respir J 24:575–579. doi: 10.1183/09031936.04.00143703 CrossRefPubMedGoogle Scholar
  12. 12.
    Muller KC, Welker L, Paasch K, Feindt B, Erpenbeck VJ, Hohlfeld JM, Krug N, Nakashima M, Branscheid D, Magnussen H, Jorres RA, Holz O (2006) Lung fibroblasts from patients with emphysema show markers of senescence in vitro. Respir Res 7:32. doi: 10.1186/1465-9921-7-32 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Blaauboer ME, Emson CL, Verschuren L, van Erk M, Turner SM, Everts V, Hanemaaijer R, Stoop R (2013) Novel combination of collagen dynamics analysis and transcriptional profiling reveals fibrosis-relevant genes and pathways. Matrix Biol 32:424–431. doi: 10.1016/j.matbio.2013.04.005 CrossRefPubMedGoogle Scholar
  14. 14.
    Konigshoff M, Kramer M, Balsara N, Wilhelm J, Amarie OV, Jahn A, Rose F, Fink L, Seeger W, Schaefer L, Gunther A, Eickelberg O (2009) WNT1-inducible signaling protein-1 mediates pulmonary fibrosis in mice and is upregulated in humans with idiopathic pulmonary fibrosis. J Clin Invest 119:772–787. doi: 10.1172/JCI33950 PubMedPubMedCentralGoogle Scholar
  15. 15.
    Villar J, Cabrera-Benitez NE, Ramos-Nuez A, Flores C, Garcia-Hernandez S, Valladares F, Lopez-Aguilar J, Blanch L, Slutsky AS (2014) Early activation of pro-fibrotic WNT5A in sepsis-induced acute lung injury. Crit Care 18:568. doi: 10.1186/s13054-014-0568-z CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26. doi: 10.1016/j.devcel.2009.06.016 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Li L, Chen Y, Doan J, Murray J, Molkentin JD, Liu Q (2014) Transforming growth factor beta-activated kinase 1 signaling pathway critically regulates myocardial survival and remodeling. Circulation 130:2162–2172. doi: 10.1161/CIRCULATIONAHA.114.011195 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kneidinger N, Yildirim AO, Callegari J, Takenaka S, Stein MM, Dumitrascu R, Bohla A, Bracke KR, Morty RE, Brusselle GG, Schermuly RT, Eickelberg O, Konigshoff M (2011) Activation of the WNT/beta-catenin pathway attenuates experimental emphysema. Am J Respir Crit Care Med 183:723–733. doi: 10.1164/rccm.200910-1560OC CrossRefPubMedGoogle Scholar
  19. 19.
    Zheng H, Liu Y, Huang T, Fang Z, Li G, He S (2009) Development and characterization of a rat model of chronic obstructive pulmonary disease (COPD) induced by sidestream cigarette smoke. Toxicol Lett 189:225–234. doi: 10.1016/j.toxlet.2009.06.850 CrossRefPubMedGoogle Scholar
  20. 20.
    Volpi G, Facchinetti F, Moretto N, Civelli M, Patacchini R (2011) Cigarette smoke and alpha, beta-unsaturated aldehydes elicit VEGF release through the p38 MAPK pathway in human airway smooth muscle cells and lung fibroblasts. Br J Pharmacol 163:649–661. doi: 10.1111/j.1476-5381.2011.01253.x CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ahmed MS, Oie E, Vinge LE, von Lueder TG, Attramadal T, Attramadal H (2007) Induction of pulmonary connective tissue growth factor in heart failure is associated with pulmonary parenchymal and vascular remodeling. Cardiovasc Res 74:323–333. doi: 10.1016/j.cardiores.2006.12.010 CrossRefPubMedGoogle Scholar
  22. 22.
    Golden HB, Gollapudi D, Gerilechaogetu F, Li J, Cristales RJ, Peng X, Dostal DE (2012) Isolation of cardiac myocytes and fibroblasts from neonatal rat pups. Methods Mol Biol 843:205–214. doi: 10.1007/978-1-61779-523-7_20 CrossRefPubMedGoogle Scholar
  23. 23.
    Bergmann MW (2010) WNT signaling in adult cardiac hypertrophy and remodeling: lessons learned from cardiac development. Circ Res 107:1198–1208. doi: 10.1161/CIRCRESAHA.110.223768 CrossRefPubMedGoogle Scholar
  24. 24.
    Liu L, Carron B, Yee HT, Yie TA, Hajjou M, Rom W (2009) Wnt pathway in pulmonary fibrosis in the bleomycin mouse model. J Environ Pathol Toxicol Oncol 28:99–108CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Li L, Chen Y, Li J, Yin H, Guo X, Doan J, Molkentin JD, Liu Q (2015) TAK1 regulates myocardial response to pathological stress via NFAT, NFkappaB, and Bnip3 pathways. Sci Rep 5:16626. doi: 10.1038/srep16626 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cushing MC, Mariner PD, Liao JT, Sims EA, Anseth KS (2008) Fibroblast growth factor represses Smad-mediated myofibroblast activation in aortic valvular interstitial cells. FASEB J 22:1769–1777. doi: 10.1096/fj.07-087627 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Rowe RG, Keena D, Sabeh F, Willis AL, Weiss SJ (2011) Pulmonary fibroblasts mobilize the membrane-tethered matrix metalloprotease, MT1-MMP, to destructively remodel and invade interstitial type I collagen barriers. Am J Physiol Lung Cell Mol Physiol 301:L683–L692. doi: 10.1152/ajplung.00187.2011 CrossRefPubMedGoogle Scholar
  28. 28.
    Thorley AJ, Tetley TD (2007) Pulmonary epithelium, cigarette smoke, and chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2:409–428PubMedPubMedCentralGoogle Scholar
  29. 29.
    Eckes B, Nischt R, Krieg T (2010) Cell-matrix interactions in dermal repair and scarring. Fibrogenesis Tissue Repair 3:4. doi: 10.1186/1755-1536-3-4 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Baarsma HA, Spanjer AI, Haitsma G, Engelbertink LH, Meurs H, Jonker MR, Timens W, Postma DS, Kerstjens HA, Gosens R (2011) Activation of WNT/beta-catenin signaling in pulmonary fibroblasts by TGF-beta(1) is increased in chronic obstructive pulmonary disease. PLoS One 6:e25450. doi: 10.1371/journal.pone.0025450 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Shi Y, Shu B, Yang R, Xu Y, Xing B, Liu J, Chen L, Qi S, Liu X, Wang P, Tang J, Xie J (2015) Wnt and Notch signaling pathway involved in wound healing by targeting c-Myc and Hes1 separately. Stem Cell Res Ther 6:120. doi: 10.1186/s13287-015-0103-4 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Huang C, Ogawa R (2012) Fibroproliferative disorders and their mechanobiology. Connect Tissue Res 53:187–196. doi: 10.3109/03008207.2011.642035 CrossRefPubMedGoogle Scholar
  33. 33.
    Li J, Li Y, He H, Liu C, Li W, Xie L, Zhang Y (2016) Csk/Src/EGFR signaling regulates migration of myofibroblasts and alveolarization. Am J Physiol Lung Cell Mol Physiol 310:L562–L571. doi: 10.1152/ajplung.00162.2015 CrossRefPubMedGoogle Scholar
  34. 34.
    Stulberg MJ, Lin A, Zhao H, Holley SA (2012) Crosstalk between Fgf and Wnt signaling in the zebrafish tailbud. Dev Biol 369:298–307. doi: 10.1016/j.ydbio.2012.07.003 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wei J, Melichian D, Komura K, Hinchcliff M, Lam AP, Lafyatis R, Gottardi CJ, MacDougald OA, Varga J (2011) Canonical Wnt signaling induces skin fibrosis and subcutaneous lipoatrophy: a novel mouse model for scleroderma? Arthritis Rheum 63:1707–1717. doi: 10.1002/art.30312 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Paul I, Bhattacharya S, Chatterjee A, Ghosh MK (2013) Current understanding on EGFR and Wnt/beta-Catenin signaling in glioma and their possible crosstalk. Genes Cancer 4:427–446. doi: 10.1177/1947601913503341 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Angbohang A, Wu N, Charalambous T, Eastlake K, Lei Y, Kim YS, Sun XH, Limb GA (2015) Downregulation of the canonical WNT signaling pathway by TGFbeta1 inhibits photoreceptor differentiation of adult human muller glia with stem cell characteristics. Stem Cells Dev. doi: 10.1089/scd.2015.0262 PubMedPubMedCentralGoogle Scholar
  38. 38.
    Choi SC, Choi JH, Cui LH, Seo HR, Kim JH, Park CY, Joo HJ, Park JH, Hong SJ, Yu CW, Lim DS (2015) Mixl1 and Flk1 are key players of Wnt/TGF-beta signaling during DMSO-induced mesodermal specification in P19 cells. J Cell Physiol 230:1807–1821. doi: 10.1002/jcp.24892 CrossRefPubMedGoogle Scholar
  39. 39.
    Atkinson JM, Rank KB, Zeng Y, Capen A, Yadav V, Manro JR, Engler TA, Chedid M (2015) Activating the Wnt/beta-catenin pathway for the treatment of melanoma-application of LY2090314, a novel selective inhibitor of glycogen synthase kinase-3. PLoS One 10:e0125028. doi: 10.1371/journal.pone.0125028 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Khan KA, Do F, Marineau A, Doyon P, Clement JF, Woodgett JR, Doble BW, Servant MJ (2015) Fine-tuning of the RIG-I-like receptor/interferon regulatory factor 3-dependent antiviral innate immune response by the glycogen synthase kinase 3/beta-catenin pathway. Mol Cell Biol 35:3029–3043. doi: 10.1128/MCB.00344-15 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Phiel CJ, Wilson CA, Lee VM, Klein PS (2003) GSK-3alpha regulates production of Alzheimer’s disease amyloid-beta peptides. Nature 423:435–439. doi: 10.1038/nature01640 CrossRefPubMedGoogle Scholar
  42. 42.
    Amit S, Hatzubai A, Birman Y, Andersen JS, Ben-Shushan E, Mann M, Ben-Neriah Y, Alkalay I (2002) Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev 16:1066–1076. doi: 10.1101/gad.230302 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Buchtova M, Oralova V, Aklian A, Masek J, Vesela I, Ouyang Z, Obadalova T, Konecna Z, Spoustova T, Pospisilova T, Matula P, Varecha M, Balek L, Gudernova I, Jelinkova I, Duran I, Cervenkova I, Murakami S, Kozubik A, Dvorak P, Bryja V, Krejci P (2015) Fibroblast growth factor and canonical WNT/beta-catenin signaling cooperate in suppression of chondrocyte differentiation in experimental models of FGFR signaling in cartilage. Biochim Biophys Acta 1852:839–850. doi: 10.1016/j.bbadis.2014.12.020 CrossRefPubMedGoogle Scholar
  44. 44.
    Fabris L, Strazzabosco M (2011) Epithelial-mesenchymal interactions in biliary diseases. Semin Liver Dis 31:11–32. doi: 10.1055/s-0031-1272832 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Hussein SM, Duff EK, Sirard C (2003) Smad4 and beta-catenin co-activators functionally interact with lymphoid-enhancing factor to regulate graded expression of Msx2. J Biol Chem 278:48805–48814. doi: 10.1074/jbc.M305472200 CrossRefPubMedGoogle Scholar
  46. 46.
    Caraci F, Gili E, Calafiore M, Failla M, La Rosa C, Crimi N, Sortino MA, Nicoletti F, Copani A, Vancheri C (2008) TGF-beta1 targets the GSK-3beta/beta-catenin pathway via ERK activation in the transition of human lung fibroblasts into myofibroblasts. Pharmacol Res 57:274–282. doi: 10.1016/j.phrs.2008.02.001 CrossRefPubMedGoogle Scholar
  47. 47.
    Masszi A, Fan L, Rosivall L, McCulloch CA, Rotstein OD, Mucsi I, Kapus A (2004) Integrity of cell-cell contacts is a critical regulator of TGF-beta 1-induced epithelial-to-myofibroblast transition: role for beta-catenin. Am J Pathol 165:1955–1967. doi: 10.1016/S0002-9440(10)63247-6 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Zhengxing Ge
    • 1
    Email author
  • Bo Li
    • 1
  • Xun Zhou
    • 1
  • Yi Yang
    • 1
  • Jun Zhang
    • 1
  1. 1.Guiyang College of Traditional Chinese MedicineGuiyangChina

Personalised recommendations