Molecular and Cellular Biochemistry

, Volume 419, Issue 1–2, pp 177–184 | Cite as

Changes in metabolic proteins in ex vivo rat retina during glutamate-induced neural progenitor cell induction

  • Kazuhiro Tokuda
  • Yasuhiro KuramitsuEmail author
  • Byron Baron
  • Takao Kitagawa
  • Nobuko Tokuda
  • Masaaki Kobayashi
  • Kazuhiro Kimura
  • Koh-Hei Sonoda
  • Kazuyuki Nakamura


Understanding how energy metabolism and related proteins influence neural progenitor cells in adult tissues is critical for developing new strategies in clinical tissue regeneration therapy. We have recently reported that a subtoxic concentration of glutamate-induced neural progenitor cells in the mature ex vivo rat retina. We herein explore changes in the metabolic pathways during the process. We firstly observed an increase in lactate and lactate dehydrogenase concentration in the glutamate-treated retina. We then investigated the levels of glycolytic enzymes and confirmed significant upregulation of pyruvate kinase M type (PKM), especially PKM2, enolase, phosphoglycerate mutase 1 (PGAM1), and inosine-5′-monophosphate dehydrogenase (IMPDH1) in the glutamate-treated retina compared to the untreated retina. An analysis of the subcellular localization of PKM2 revealed nuclear translocation in the treated retina, which has been reported to regulate cell cycle proliferation and glycolytic enzymes. Our findings indicate that the mature rat retina undergoes an increase in aerobic glycolysis. PKM2, both in the cytoplasm and in the nucleus, may thus play an important role during neural progenitor cell induction, as it does in other proliferating cells.


Glutamate Metabolism Glycolysis Progenitor cell Regeneration Retina 



The authors thank Yukari Mizuno and Shizuka Murata for technical assistance and support. Immunoblot detection by LAS-1000 and colorimetric measurement by iMark were carried out at the Gene Research Centre of Yamaguchi University. This work was supported by Grants-in-Aid from the Ministry of Education, Science, Sports, and Culture of Japan (No. 26293373 to Koh-Hei Sonoda).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Geschwind DH, Ou J, Easterday MC, Dougherty JD, Jackson RL, Chen Z, Antoine H, Terskikh A, Weissman IL, Nelson SF, Kornblum HI (2001) A genetic analysis of neural progenitor differentiation. Neuron 29:325–339CrossRefPubMedGoogle Scholar
  2. 2.
    Karsten SL, Kudo LC, Jackson R, Sabatti C, Kornblum HI, Geschwind DH (2003) Global analysis of gene expression in neural progenitors reveals specific cell-cycle, signaling, and metabolic networks. Dev Biol 261:165–182CrossRefPubMedGoogle Scholar
  3. 3.
    Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR (2002) A stem cell molecular signature. Science 298:601–604CrossRefPubMedGoogle Scholar
  4. 4.
    Agathocleous M, Love NK, Randlett O, Harris JJ, Liu J, Murray AJ, Harris WA (2012) Metabolic differentiation in the embryonic retina. Nat Cell Biol 14:859–864CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fischer AJ, Reh TA (2001) Müller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat Neurosci 4:247–252CrossRefPubMedGoogle Scholar
  6. 6.
    Takeda M, Takamiya A, Jiao JW, Cho KS, Trevino SG, Matsuda T, Chen DF (2008) Alpha-aminoadipate induces progenitor cell properties of Müller glia in adult mice. Invest Ophthalmol Vis Sci 49:1142–1150CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Tokuda K, Kuramitsu Y, Byron B, Kitagawa T, Tokuda N, Kobayashi D, Nagayama M, Araki N, Sonoda KH, Nakamura K (2015) Up-regulation of DRP-3 long isoform during the induction of neural progenitor cells by glutamate treatment in the ex vivo rat retina. Biochem Biophys Res Commun 463:593–599CrossRefPubMedGoogle Scholar
  8. 8.
    Tokuda K, Zorumski CF, Izumi Y (2009) Involvement of illumination in indocyanine green toxicity after its washout in the ex vivo rat retina. Retina 29:371–379CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  10. 10.
    Kuramitsu Y, Harada T, Takashima M, Yokoyama Y, Hidaka I, Iizuka N, Toda T, Fujimoto M, Zhang X, Sakaida I, Okita K, Oka M, Nakamura K (2006) Increased expression and phosphorylation of liver glutamine synthetase in well-differentiated hepatocellular carcinoma tissues from patients infected with hepatitis C virus. Electrophoresis 27:1651–1658CrossRefPubMedGoogle Scholar
  11. 11.
    Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J (2010) The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 28:721–733CrossRefPubMedGoogle Scholar
  12. 12.
    Candelario KM, Shuttleworth CW, Cunningham LA (2013) Neural stem/progenitor cells display a low requirement for oxidative metabolism independent of hypoxia inducible factor-1alpha expression. J Neurochem 125:420–429CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wang HJ, Hsieh YJ, Cheng WC, Lin CP, Lin YS, Yang SF, Chen CC, Izumiya Y, Yu JS, Kung HJ, Wang WC (2014) JMJD5 regulates PKM2 nuclear translocation and reprograms HIF-1α-mediated glucose metabolism. Proc Natl Acad Sci USA 111:279–284CrossRefPubMedGoogle Scholar
  14. 14.
    Bani-Yaghoub M, Felker JM, Ozog MA, Bechberger JF, Naus CC (2001) Array analysis of the genes regulated during neuronal differentiation of human embryonal cells. Biochem Cell Biol 79:387–398CrossRefPubMedGoogle Scholar
  15. 15.
    Venkatesan A, Uzasci L, Chen Z, Rajbhandari L, Anderson C, Lee MH, Bianchet MA, Cotter R, Song H, Nath A (2011) Impairment of adult hippocampal neural progenitor proliferation by methamphetamine: role for nitrotyrosination. Mol Brain 4:28. doi: 10.1186/1756-6606-4-28 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Durany N, Joseph J, Campo E, Molina R, Carreras J (1997) Phosphoglycerate mutase, 2,3-bisphosphoglycerate phosphatase and enolase activity and isoenzymes in lung, colon and liver carcinomas. Br J Cancer 75:969–977CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, Gao X, Aldape K, Lu Z (2011) Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature 480:118–122CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    McLean JE, Hamaguchi N, Belenky P, Mortimer SE, Stanton M, Hedstrom L (2004) Inosine 5′-monophosphate dehydrogenase binds nucleic acids in vitro and in vivo. Biochem J 379:243–251CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Taniguchi K, Ito Y, Sugito N, Kumazaki M, Shinohara H, Yamada N, Nakagawa Y, Sugiyama T, Futamura M, Otsuki Y, Yoshida K, Uchiyama K, Akao Y (2015) Organ-specific PTB1-associated microRNAs determine expression of pyruvate kinase isoforms. Sci Rep 5:8647. doi: 10.1038/srep08647 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Noguchi T, Yamada K, Inoue H, Matsuda T, Tanaka T (1987) The L- and R-type isozymes of rat pyruvate kinase are produced from a single gene by use of different promoters. J Biol Chem 262:14366–14371PubMedGoogle Scholar
  21. 21.
    Noguchi T, Inoue H, Tanaka T (1986) The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J Biol Chem 261:13807–13812PubMedGoogle Scholar
  22. 22.
    Jurica MS, Mesecar A, Heath PJ, Shi W, Nowak T, Stoddard BL (1998) The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate. Structure 6:195–210CrossRefPubMedGoogle Scholar
  23. 23.
    Vander Heiden MG, Locasale JW, Swanson KD, Sharfi H, Heffron GJ, Amador-Noguez D, Christofk HR, Wagner G, Rabinowitz JD, Asara JM, Cantley LC (2010) Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329:1492–1499CrossRefPubMedGoogle Scholar
  24. 24.
    Wisniewska MB (2013) Physiological role of β-catenin/TCF signaling in neurons of the adult brain. Neurochem Res 38:1144–1155CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gao X, Wang H, Yang JJ, Liu X, Liu ZR (2012) Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol Cell 45:598–609CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yang W, Zheng Y, Xia Y, Ji H, Chen X, Guo F, Lyssiotis CA, Aldape K, Cantley LC, Lu Z (2012) ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol 14:1295–1304CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Fothergill-Gilmore LA, Watson HC (1990) Phosphoglycerate mutases. Biochem Soc Trans 18:190–193CrossRefPubMedGoogle Scholar
  28. 28.
    Yalowitz JA, Jayaram HN (2000) Molecular targets of guanine nucleotides in differentiation, proliferation and apoptosis. Anticancer Res 20:2329–2338PubMedGoogle Scholar
  29. 29.
    Natsumeda Y, Ohno S, Kawasaki H, Konno Y, Weber G, Suzuki K (1990) Two distinct cDNAs for human IMP dehydrogenase. J Biol Chem 265:5292–5295PubMedGoogle Scholar
  30. 30.
    Bowne SJ, Sullivan LS, Mortimer SE, Hedstrom L, Zhu J, Spellicy CJ, Gire AI, Hughbanks-Wheaton D, Birch DG, Lewis RA, Heckenlively JR, Daiger SP (2006) Spectrum and frequency of mutations in IMPDH1 associated with autosomal dominant retinitis pigmentosa and Leber congenital amaurosis. Invest Ophthalmol Vis Sci 47:34–42CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mortimer SE, Xu D, McGrew D, Hamaguchi N, Lim HC, Bowne SJ, Daiger SP, Hedstrom L (2008) IMP dehydrogenase type 1 associates with polyribosomes translating rhodopsin mRNA. J Biol Chem 283:36354–36360CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bowne SJ, Sullivan LS, Blanton SH, Cepko CL, Blackshaw S, Birch DG, Hughbanks-Wheaton D, Heckenlively JR, Daiger SP (2002) Mutations in the inosine monophosphate dehydrogenase 1 gene (IMPDH1) cause the RP10 form of autosomal dominant retinitis pigmentosa. Hum Mol Genet 11:559–568CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kennan A, Aherne A, Palfi A, Humphries M, McKee A, Stitt A, Simpson DA, Demtroder K, Orntoft T, Ayuso C, Kenna PF, Farrar GJ, Humphries P (2002) Identification of an IMPDH1 mutation in autosomal dominant retinitis pigmentosa (RP10) revealed following comparative microarray analysis of transcripts derived from retinas of wild-type and Rho(-/-) mice. Hum Mol Genet 11:547–557CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kazuhiro Tokuda
    • 1
    • 2
  • Yasuhiro Kuramitsu
    • 2
    Email author
  • Byron Baron
    • 2
    • 3
  • Takao Kitagawa
    • 2
  • Nobuko Tokuda
    • 4
  • Masaaki Kobayashi
    • 1
  • Kazuhiro Kimura
    • 1
  • Koh-Hei Sonoda
    • 5
  • Kazuyuki Nakamura
    • 2
  1. 1.Department of OphthalmologyYamaguchi University Graduate School of MedicineUbeJapan
  2. 2.Department of Biochemistry and Functional ProteomicsYamaguchi University Graduate School of MedicineUbeJapan
  3. 3.Centre for Molecular Medicine and Biobanking, Faculty of Medicine and SurgeryUniversity of MaltaMsidaMalta
  4. 4.Faculty of Health SciencesYamaguchi University Graduate School of MedicineUbeJapan
  5. 5.Department of Ophthalmology, Graduate School of Medical SciencesKyushu UniversityHigashi-KuJapan

Personalised recommendations