Molecular and Cellular Biochemistry

, Volume 417, Issue 1–2, pp 191–203 | Cite as

miR-30c and miR-181a synergistically modulate p53–p21 pathway in diabetes induced cardiac hypertrophy

  • Satish K. Raut
  • Gurinder B. Singh
  • Bhawna Rastogi
  • Uma Nahar Saikia
  • Anupam Mittal
  • Nilambra Dogra
  • Sandeep Singh
  • Rishikesh Prasad
  • Madhu KhullarEmail author


p53–p21 pathway mediates cardiomyocyte hypertrophy and apoptosis and is upregulated in diabetic cardiomyopathy (DbCM). We investigated role of microRNAs in regulating p53–p21 pathway in high glucose (HG)-induced cardiomyocyte hypertrophy and apoptosis. miR-30c and miR-181a were identified to target p53. Cardiac expression of microRNAs was measured in diabetic patients, diabetic rats, and in HG-treated cardiomyocytes. Effect of microRNAs over-expression and inhibition on HG-induced cardiomyocyte hypertrophy and apoptosis was examined. Myocardial expression of p53 and p21 genes was increased and expression of miR-30c and miR-181a was significantly decreased in diabetic patients, DbCM rats, and in HG-treated cardiomyocytes. Luciferase assay confirmed p53 as target of miR-30c and miR-181a. Over-expression of miR-30c or miR-181a decreased expression of p53, p21, ANP, cardiomyocyte cell size, and apoptosis in HG-treated cardiomyocytes. Concurrent over-expression of these microRNAs resulted in greater decrease in cardiomyocyte hypertrophy and apoptosis, suggesting a synergistic effect of these microRNAs. Our results suggest that dysregulation of miR-30c and miR-181a may be involved in upregulation of p53–p21 pathway in DbCM.


Apoptosis Cardiac hypertrophy Diabetic cardiomyopathy miR-30c miR-181a p53 



This research was supported by the Department of Science and Technology (SR/SO/HS-0049/2010). Satish K Raut is a PhD student in Department of Experimental Medicine and Biotechnology, PGIMER and was supported by Indian Council of Medical Education and Research (3/1/2(13)/CVD/2010/NCD-II), New Delhi, India.

Compliance with ethical standards

Conflict of Interest

The authors declare they have no conflict interests.


  1. 1.
    Avogaro A, Vigili de Kreutzenberg S, Negut C, Tiengo A, Scognamiglio R (2004) Diabetic cardiomyopathy: a metabolic perspective. Am J Cardiol 93:13A–16ACrossRefPubMedGoogle Scholar
  2. 2.
    Anguita Sánchez M (2002) Prevention and treatment of congestive heart failure in diabetic patients. Rev Esp Cardiol 55:1083–1087CrossRefPubMedGoogle Scholar
  3. 3.
    Nunes S, Soares E, Fernandes J, Viana S, Carvalho E, Pereira FC, Reis F (2013) Early cardiac changes in a rat model of prediabetes: brain natriuretic peptide overexpression seems to be the best marker. Cardiovasc Diabetol 12:44CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Fiordaliso F, Leri A, Cesselli D, Limana F, Safai B, Nadal-Ginard B, Kajstura J (2001) Hyperglycemia activates p53 and p53-regulated genes leading to myocyte cell death. Diabetes 50:2363–2375CrossRefPubMedGoogle Scholar
  5. 5.
    Letonja M, Petrovič D (2014) Is diabetic cardiomyopathy a specific entity? World J Cardiol 6:8–13CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Abid S, Houssaïni A, Mouraret N, Marcos E, Amsellem V, Wan F, Dubois-Randé JL, Derumeaux G, Boczkowski J, Motterlini R, Adnot S (2014) p21-dependent protective effects of a carbon monoxide-releasing molecule-3 in pulmonary hypertension. Arterioscler Thromb Vasc Biol 34:304–312CrossRefPubMedGoogle Scholar
  7. 7.
    Chatterjee A, Mir SA, Dutta D, Mitra A, Pathak K, Sarkar S (2011) Analysis of p53 and NF-κB signaling in modulating the cardiomyocyte fate during hypertrophy. J Cell Physiol 226:2543–2554CrossRefPubMedGoogle Scholar
  8. 8.
    Das B, Young D, Vasanji A, Gupta S, Sarkar S, Sen S (2010) Influence of p53 in the transition of myotrophin-induced cardiac hypertrophy to heart failure. Cardiovasc Res 87:524–534CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hernández JS, Barreto-Torres G, Kuznetsov AV, Khuchua Z, Javadov S (2014) Crosstalk between AMPK activation and angiotensin II-induced hypertrophy in cardiomyocytes: the role of mitochondria. J Cell Mol Med 18:709–720CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ikeda S, Hamada M, Hiwada K (1999) Cardiomyocyte apoptosis with enhanced expression of P53 and Bax in right ventricle after pulmonary arterial banding. Life Sci 65:925–933CrossRefPubMedGoogle Scholar
  11. 11.
    Jiang FL, Leo S, Wang XG, Li H, Gong LY, Kuang Y, Xu XF (2013) Effect of tanshinone IIA on cardiomyocyte hypertrophy and apoptosis in spontaneously hypertensive rats. Exp Ther Med 6:1517–1521PubMedPubMedCentralGoogle Scholar
  12. 12.
    Kimura TE, Jin J, Zi M, Prehar S, Liu W, Oceandy D, Abe J, Neyses L, Weston AH, Cartwright EJ, Wang X (2010) Targeted deletion of the extracellular signal-regulated protein kinase 5 attenuates hypertrophic response and promotes pressure overload-induced apoptosis in the heart. Circ Res 106:961–970CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sano M, Minamino T, Toko H, Miyauchi H, Orimo M, Qin Y, Akazawa H, Tateno K, Kayama Y, Harada M, Shimizu I, Asahara T, Hamada H, Tomita S, Molkentin JD, Zou Y, Komuro I (2007) p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature 446:444–448CrossRefPubMedGoogle Scholar
  14. 14.
    Tsukamoto O, Minamino T, Okada K, Shintani Y, Takashima S, Kato H, Liao Y, Okazaki H, Asai M, Hirata A, Fujita M, Asano Y, Yamazaki S, Asanuma H, Hori M, Kitakaze M (2006) Depression of proteasome activities during the progression of cardiac dysfunction in pressure-overloaded heart of mice. Biochem Biophys Res Commun 340:1125–1133CrossRefPubMedGoogle Scholar
  15. 15.
    Vahtola E, Storvik M, Louhelainen M, Merasto S, Lakkisto P, Lakkisto J, Tikkanen I, Kaheinen P, Levijoki J, Mervaala E (2011) Diabetic cardiomyopathy and post-infarct ventricular remodelling: effects of levosimendan in a rodent model of type II diabetes. Basic Clin Pharmacol Toxicol 109:387–397CrossRefPubMedGoogle Scholar
  16. 16.
    Vahtola E, Louhelainen M, Merasto S, Martonen E, Penttinen S, Aahos I, Kytö V, Virtanen I, Mervaala E (2008) Forkhead class O transcription factor 3a activation and Sirtuin1 overexpression in the hypertrophied myocardium of the diabetic Goto-Kakizaki rat. J Hypertens 26:334–344CrossRefPubMedGoogle Scholar
  17. 17.
    Mönkemann H, De Vriese AS, Blom HJ, Kluijtmans LA, Heil SG, Schild HH, Golubnitschaja O (2002) Early molecular events in the development of the diabetic cardiomyopathy. Amino Acids 23:331–336CrossRefPubMedGoogle Scholar
  18. 18.
    Golubnitschaja O, Moenkemann H, Trog DB, Blom HJ, De Vriese AS (2006) Activation zf genes inducing cell-cycle arrest and of increased DNA repair in the hearts of rats with early streptozotocin-induced diabetes mellitus. Med Sci Monit 12:BR68–BR74PubMedGoogle Scholar
  19. 19.
    Kuwabara Y, Horie T, Baba O, Watanabe S, Nishiga M, Usami S, Izuhara M, Nakao T, Nishino T, Otsu K, Kita T, Kimura T, Ono K (2015) MicroRNA-451 Exacerbates Lipotoxicity in Cardiac Myocytes and High-Fat Diet-Induced Cardiac Hypertrophy in Mice Through Suppression of the LKB1/AMPK Pathway. Circ Res 116:279–288CrossRefPubMedGoogle Scholar
  20. 20.
    Zheng D, Ma J, Yu Y, Li M, Ni R, Wang G, Chen R, Li J, Fan GC, Lacefield JC, Peng T (2015) Silencing of miR-195 reduces diabetic cardiomyopathy in C57BL/6 mice. Diabetologia 58:1949–1958CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Li X, Du N, Zhang Q, Li J, Chen X, Liu X, Hu Y, Qin W, Shen N, Xu C, Fang Z, Wei Y, Wang R, Du Z, Zhang Y, Lu Y (2014) MicroRNA-30d regulates cardiomyocyte pyroptosis by directly targeting foxo3a in diabetic cardiomyopathy. Cell Death Dis 5:e1479CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Li J, Donath S, Li Y, Qin D, Prabhakar BS, Li P (2010) miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet 6:e1000795CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Forini F, Kusmic C, Nicolini G, Mariani L, Zucchi R, Matteucci M, Iervasi G, Pitto L (2014) Triiodothyronine prevents cardiac ischemia/reperfusion mitochondrial impairment and cell loss by regulating miR30a/p53 axis. Endocrinology 155:4581–4590CrossRefPubMedGoogle Scholar
  24. 24.
    Cheah YK, Cheng RW, Yeap SK, Khoo CH, See HS (2014) Analysis of TP53 gene expression and p53 level of human hypopharyngeal FaDu (HTB-43) head and neck cancer cell line after microRNA-181a inhibition. Genet Mol Res 13:1679–1683CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang M, Lv XY, Li J, Xu ZG, Chen L (2009) The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Exp Diabetes Res 2008:704045PubMedCentralGoogle Scholar
  26. 26.
    Raut SK, Kumar A, Singh GB, Nahar U, Sharma V, Mittal A, Khullar M (2015) miR-30c Mediates Upregulation of Cdc42 and Pak1 in Diabetic Cardiomyopathy. Cardiovasc Ther 33:89–97CrossRefPubMedGoogle Scholar
  27. 27.
    Chen J, Kastan MB (2010) 5′–3′-UTR interactions regulate p53 mRNA translation and provide a target for modulating p53 induction after DNA damage. Genes Dev 24:2146–2156CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Chen X, Prywes R (1999) Serum-induced expression of the cdc25AGene by relief of E2F-mediated repression. Mol Cell Biol 19:4695–4702CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ganesan J, Ramanujam D, Sassi Y, Ahles A, Jentzsch C, Werfel S, Engelhardt S (2013) MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors. Circulation 127:2097–2106CrossRefPubMedGoogle Scholar
  30. 30.
    Wang JX, Zhang XJ, Feng C, Sun T, Wang K, Wang Y, Li PF (2015) MicroRNA-532-3p regulates mitochondrial fission through targeting apoptosis repressor with caspase recruitment domain in doxorubicin cardiotoxicity. Cell Death Dis 6:e1677CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Roca-Alonso L, Castellano L, Mills A, Dabrowska AF, Sikkel MB, Pellegrino L, Jacob J, Frampton AE, Krell J, Coombes R, Harding SE, Lyon AR, Stebbing J (2015) Myocardial MiR-30 downregulation triggered by doxorubicin drives alterations in β-adrenergic signaling and enhances apoptosis. Cell Death Dis 6:e1754CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Duisters RF, Tijsen AJ, Schroen B, Leenders JJ, Lentink V, van der Made I, Herias V, van Leeuwen RE, Schellings MW, Barenbrug P, Maessen JG, Heymans S, Pinto YM, Creemers EE (2009) miR-133 and miR-30 regulate connective tissue growth factor Implications for a role of microRNAs in myocardial matrix remodeling. Circ Res 104:170–178CrossRefPubMedGoogle Scholar
  33. 33.
    Liu Q, Du GQ, Zhu ZT, Zhang C, Sun XW, Liu JJ, Li X, Wang YS, Du WJ (2015) Identification of apoptosis-related microRNAs and their target genes in myocardial infarction post-transplantation with skeletal myoblasts. J Transl Med 13:270CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hirt MN, Werner T, Indenbirken D, Alawi M, Demin P, Kunze AC, Stenzig J, Starbatty J, Hansen A, Fiedler J, Thum T, Eschenhagen T (2015) Deciphering the microRNA signature of pathological cardiac hypertrophy by engineered heart tissue- and sequencing-technology. J Mol Cell Cardiol 81:1–9CrossRefPubMedGoogle Scholar
  35. 35.
    Balderman JA, Lee HY, Mahoney CE, Handy DE, White K, Annis S, Lebeche D, Hajjar RJ, Loscalzo J, Leopold JA (2012) Bone morphogenetic protein-2 decreases MicroRNA-30b and MicroRNA-30c to promote vascular smooth muscle cell calcification. J Am Heart Assoc 1:e003905CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Abonnenc M, Nabeebaccus AA, Mayr U, Barallobre-Barreiro J, Dong X, Cuello F, Sur S, Drozdov I, Langley SR, Lu R, Stathopoulou K, Didangelos A, Yin X, Zimmermann WH, Shah AM, Zampetaki A, Mayr M (2013) Extracellular matrix secretion by cardiac fibroblasts role of MicroRNA-29b and MicroRNA-30c. Circ Res 113:1138–1147CrossRefPubMedGoogle Scholar
  37. 37.
    Carolina G, Claudia K, Elena C, Francesco M, Milena R, Laura M, Letizia P (2013) miR-29a and miR-30c negatively regulate DNMT 3a in cardiac ischemic tissues: implications for cardiac remodelling. MicroRNA Diagn Ther 1:2084–6843Google Scholar
  38. 38.
    Feng HJ, Ouyang W, Liu JH, Sun YG, Hu R, Huang LH, Xian JL, Jing CF, Zhou MJ (2014) Global microRNA profiles and signaling pathways in the development of cardiac hypertrophy. Braz J Med Biol Res 7:361–368CrossRefGoogle Scholar
  39. 39.
    Isserlin R, Merico D, Wang D, Vuckovic D, Bousette N, Gramolini AO, Bader GD, Emili A (2014) Systems analysis reveals down-regulation of a network of pro-survival miRNAs drives the apoptotic response in dilated cardiomyopathy. Mol BioSyst 11:239–251CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Reddy S, Zhao M, Hu DQ, Fajardo G, Hu S, Ghosh Z, Rajagopalan V, Wu JC, Bernstein D (2012) Dynamic microRNA expression during the transition from right ventricular hypertrophy to failure. Physiol Genomics 44:562–575CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wijnen WJ, van der Made I, van den Oever S, Hiller M, de Boer BA, Picavet DI, Chatzispyrou IA, Houtkooper RH, Tijsen AJ, Hagoort J, van Veen H, Everts V, Ruijter JM, Pinto YM, Creemers EE (2014) Cardiomyocyte-Specific miRNA-30c Over-Expression Causes Dilated Cardiomyopathy. PLOS ONE 9:e96290CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kuster DW, Mulders J, Ten Cate FJ, Michels M, Dos Remedios CG, da Costa Martins PA, van der Velden J, Oudejans CB (2013) MicroRNA transcriptome profiling in cardiac tissue of hypertrophic cardiomyopathy patients with MYBPC3 mutations. J Mol Cell Cardiol 65:59–66CrossRefPubMedGoogle Scholar
  43. 43.
    Zhu W, Zhao Y, Xu Y, Sun Y, Wang Z, Yuan W, Du Z (2013) Dissection of Protein Interactomics Highlights MicroRNA Synergy. PLoS ONE 8:e63342CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Satish K. Raut
    • 1
  • Gurinder B. Singh
    • 1
  • Bhawna Rastogi
    • 2
  • Uma Nahar Saikia
    • 3
  • Anupam Mittal
    • 4
  • Nilambra Dogra
    • 1
  • Sandeep Singh
    • 5
  • Rishikesh Prasad
    • 1
  • Madhu Khullar
    • 1
    Email author
  1. 1.Department of Experimental Medicine and BiotechnologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia
  2. 2.Department of OtolaryngologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia
  3. 3.Department of HistopathologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia
  4. 4.Department of CardiologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia
  5. 5.Centre for Genetic Diseases and Molecular MedicineCentral University of PunjabBathindaIndia

Personalised recommendations