Advertisement

Molecular and Cellular Biochemistry

, Volume 416, Issue 1–2, pp 193–203 | Cite as

Inhibitory effect of genetically engineered mesenchymal stem cells with Apoptin on hepatoma cells in vitro and in vivo

  • Jingsi Zhang
  • Lingling HouEmail author
  • Xiaoyan Wu
  • Diandian Zhao
  • Ziling Wang
  • Honggang Hu
  • Yuanhui Fu
  • Jinsheng He
Article

Abstract

Hepatocellular carcinoma (HCC) is an aggressive tumor and has become one of the most frequent causes of cancer death in the world. The rate of post-operative recurrence and metastasis are still high even though after surgical resection. It is a difficult problem with extraordinary importance for the clinical treatment. So stem cell therapy becomes one of the anti-tumor biotherapy methods which is exploring. Due to the feature of homing to tumor site and immunosuppressive, mesenchymal stem cells (MSCs) have the capacity of gene treatment to tumor as a vehicle. Apoptin derived from chicken anemia virus is one kind of protein with an inherent ability to lyse cancer cells while leaving normal cells unharmed. Adenovirus (Ad) vectors can be modified to deliver therapeutic genes with the advantages of low toxicity and high transfer capacity. Now it has not been reported that combining MSCs and Adenovirus with Apoptin are used in HCC treatment. This study intends to construct recombinant adenovirus which expresses Apoptin and then infects human bone marrow MSCs, and explore the migration of MSCs to the hepatoma cells and inhibitory effect of genetically engineered mesenchymal stem cells with Apoptin on hepatoma cells in vitro and in vivo. Our research successfully established the recombinant Ad which was constructed by Ad system, and obtained MSCs which could secrete Apoptin. We found that both the modified MSCs with Apoptin and their conditional medium significantly inhibited the proliferation of liver cancer cells HepG2, which provided a novel means and experimental basis for stem cell treatment for HCC. This study tries to search for a stem cell therapy for cancers, which will provide a new approach and experimental basis for the clinical treatment of cancer. At the same time, this research will also provide experimental basis for a novel in vivo drug delivery system through stem cells as vehicle, which will resolve immune rejection induced by repeated applications of drug directly delivered by Ad vectors and reduce the high cost of a large-scale production and purification of exogenous drugs.

Keywords

Hepatocellular carcinoma Mesenchymal stem cells Apoptin Inhibitory 

Notes

Acknowledgments

This study was supported by the National Natural Science Foundation of China (81201762) and the National High Technology Research and Development Program of China (2015YJS164).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

References

  1. 1.
    Forner A, Llovet JM, Bruix J (2012) Hepatocellular carcinoma. Lancet 379(9822):1245–1255CrossRefPubMedGoogle Scholar
  2. 2.
    Nordenstedt H, White DL, El-Serag HB (2010) The changing pattern of epidemiology in hepatocellular carcinoma. Dig Liver Dis 42(Suppl 3):S206–S214. doi: 10.1016/S1590-8658(10)60507-5 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Theise ND, Chen CJ, Kew MC (2014) Liver cancer. World Cancer Report, pp 577–593Google Scholar
  4. 4.
    Sintra SN, Tomé L, Cipriano MA, Bento C, Furtado E (2013) Long-term outcome of the first 150 liver transplant recipients: a single-center experience. Transpl Proc 45(3):1119–1121CrossRefGoogle Scholar
  5. 5.
    Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25(11):2739–2749CrossRefPubMedGoogle Scholar
  6. 6.
    Bianco P, Robey PG (2001) Stem cells in tissue engineering. Nature 414(6859):118–121CrossRefPubMedGoogle Scholar
  7. 7.
    Kuo TK, Hung SP, Chuang CH, Chen CT, Shih YR, Fang SC, Yang VW et al (2008) Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology 134(7):2111–2121CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gunnarsson S, Bexell D, Svensson A, Siesjö P, Darabi A, Bengzon J (2010) Intratumoral IL-7 delivery by mesenchymal stromal cells potentiates IFN-γ-tansduced tumor cell immunotherapy of experimental glioma. J Neuroimmunol 218(1–2):140–144CrossRefPubMedGoogle Scholar
  9. 9.
    Gao P, Ding Q, Wu Z, Jiang H, Fang Z (2010) Therapeutic potential of human mesenchymal stem cells producing IL-12 in a mouse xenograft model of renal cell carcinoma. Cancer Lett 290(2):157–166CrossRefPubMedGoogle Scholar
  10. 10.
    Ren C, Kumar S, Chanda D, Chen J, Mountz JD, Ponnazhagan S (2008) Therapeutic potential of mesenchymal stem cells producing interferon-alpha in a mouse melanoma lung metastasis model. Stem Cells 26(9):2332–2338CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ďuriniková E, Kučerová L, Matúšková M (2014) Mesenchymal stromal cells retrovirally transduced with prodrug-converting genes are suitable vehicles for cancer gene therapy. Acta Virol 58(1):1–13CrossRefPubMedGoogle Scholar
  12. 12.
    Loebinger MR, Eddaoudi A, Davies D, Janes SM (2009) Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res 69(10):4132–4142CrossRefGoogle Scholar
  13. 13.
    Chen X, Lin X, Zhao J, Shi W, Zhang H, Wang Y et al (2008) A tumor-selective biotherapy with prolonged impact on established metastases based on cytokine gene-engineered MSCs. Mol Ther 16(4):749–756CrossRefPubMedGoogle Scholar
  14. 14.
    Seo SH, Kim KS, Park SH, Suh YS, Kim SJ, Jeun SS et al (2011) The effects of mesenchymal stem cells injected via different routes on modified IL-12-meidated antitumor activity. Gene Ther 18(5):488–495CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Noteborn MH, Todd D, Verschueren CA, de Gauw HW, Curran WL, Veldkamp S et al (1994) A single chicken anemia virus protein induces apoptosis. J Virol 68(1):346–351PubMedPubMedCentralGoogle Scholar
  16. 16.
    Taebunpakul P, Syan BS, Flinterman M, Klanrit P, Gäken J, Odell EW et al (2012) Apoptin induces apoptosis by changing the equilibrium between the stability of TAp73 and δNp73 isoforms through ubiquitin ligase PIR2. Apoptosis 17(8):762–776CrossRefPubMedGoogle Scholar
  17. 17.
    Maddika S, Booy EP, Johar D, Gibson SB, Ghavami S, Los M (2005) Cancer-specific toxicity of Apoptin is independent of death receptors but involves the loss of mitochondrial membrane potential and the release of mitochondrial cell-death mediators by a Nur7-dependent pathway. J Cell Sci 118(19):4485–4493CrossRefPubMedGoogle Scholar
  18. 18.
    Danen-Van Oorschot AA, Zhang YH, Leliveld SR, Rohn JL, Seelen MC, Bolk MW et al (2003) Importance of nuclear localization of Apoptin for tumor-specific induction of apoptosis. J Biol Chem 278(30):27729–27736CrossRefPubMedGoogle Scholar
  19. 19.
    Kuusisto HV, Wagstaff KM, Alvisi G, Jans DA (2008) The C-terminus of Apoptin represents a unique tumor cell-enhanced nuclear targeting module. Int J Cancer 123(12):2965–2969CrossRefPubMedGoogle Scholar
  20. 20.
    Berks BC, Lea SM, Stansfeld PJ (2014) Structural biology of tat protein transport. Curr Opin Struct Biol 27:32–37CrossRefPubMedGoogle Scholar
  21. 21.
    Torchilin VP, Lukyanov AN (2003) Peptide and protin drug delivery to and into tumors: challenges and solutions. Drug Discov Today 8(6):259–266CrossRefPubMedGoogle Scholar
  22. 22.
    Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M (2002) Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 62(13):3603–3608PubMedGoogle Scholar
  23. 23.
    Kassem M, Kristiansen M, Abdallah BM (2004) Mesenchymal stem cells: cell biology and potential use in therapy. Basic Clin Pharmacol Toxicol 95(5):209–214CrossRefPubMedGoogle Scholar
  24. 24.
    Wakisaka N, Taira Y, Ishikawa M, Nakamizo Y, Kobayashi K, Uwabu M et al (2005) Effectiveness of finasteride on patients with male pattern baldness who have different androgen receptor gene polymorphism. J Investig Dermatol Symp Proc 10(3):293–294CrossRefPubMedGoogle Scholar
  25. 25.
    Lazennec G, Jorgensen C (2008) Concise review: adult multipotent stromal cells and cancer: risk or benefit? Stem Cells 26(6):1387–1394CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN et al (2004) Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 96(21):1593–1603CrossRefPubMedGoogle Scholar
  27. 27.
    Corsten MF, Shah K (2008) Therapeutic stem-cells for cancer treatment: hopes and hurdles in tactical warfare. Lancet Oncol 9(4):376–384CrossRefPubMedGoogle Scholar
  28. 28.
    Ozdemir V, Williams-Jones B, Glatt SJ, Tsuang MT, Lohr JB, Reist C (2006) Shifting emphasis from pharmacogenomics to theragnostics. Nat Biotechnol 24(8):942–946. doi: 10.1038/nbt0806-942 CrossRefPubMedGoogle Scholar
  29. 29.
    Hall B, Dembinski J, Sasser AK, Studeny M, Andreeff M, Marini F (2007) Mesenchymal stem cells in cancer: tumor-associated fibroblasts and cell-based delivery vehicles. Int J Hematol 86(1):8–16CrossRefPubMedGoogle Scholar
  30. 30.
    Wolf D, Rumpold H, Koeck R, Gunsilius E (2005) Re: mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 97(7):540–541CrossRefPubMedGoogle Scholar
  31. 31.
    Van Damme A, Thorrez L, Ma L, Vandenburgh H, Eyckmans J, Dell’Accio F, De Bari C et al (2006) Efficient lentiviral transduction and improved engraftment of human bone marrow mesenchymal cells. Stem Cells 24(4):896–907CrossRefPubMedGoogle Scholar
  32. 32.
    Hoelters J, Ciccarella M, Drechsel M, Geissler C, Gülkan H, Böcker W et al (2005) Nonviral genetic modification mediates effective transgene expression and functional RNA interference in human mesenchymal stem cells. J Gene Med 7(6):718–728CrossRefPubMedGoogle Scholar
  33. 33.
    Ren C, Kumar S, Chanda D, Kallman L, Chen L, Mountz JD et al (2008) Cancer gene therapy using mesenchymal stem cells expressing interferon-beta in a mouse prostate cancer lung metastasis model. Gene Ther 15(21):1446–1453CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Mader EK, Maeyama Y, Lin Y, Butler GW, Russell HM, Galanis E et al (2009) Mesenchymal stem cell carriers protect oncolytic measles viruses from antibody neutralization in an orthotopic ovarian cancer therapy model. Clin Cancer Res 15(23):7246–7255CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kucerova L, Altanerova V, Matuskova M, Tyciakova S, Altaner C (2007) Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res 67(13):6304–6313CrossRefPubMedGoogle Scholar
  36. 36.
    Sasprotas LS, Kasmieh R, Wakimoto H, Hingtgen S, van de Water JA, Mohapatra G (2009) Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci USA 106(12):4822–4827CrossRefGoogle Scholar
  37. 37.
    Hakansson S, Jacobs A, Caffrey M (2001) Heparin binding by the HIV-1 tat protein transduction domain. Protein Sci 10(10):2138–2139CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hyndman L, Lemoine JL, Huang L, Porteous DJ, Boyd AC, Nan X (2004) HIV-1 Tat protein transduction domain peptide facilitates gene transfer in combination with cationic liposomes. J Control Release 99(3):435–444CrossRefPubMedGoogle Scholar
  39. 39.
    Liu L, Yu R, Shi Y, Dai Y, Zeng Z, Guo X et al (2014) Transduced protein transduction domain linker HSP27 protected LECs against UVB radiation-induced damage. Exp Eye Res 120:36–42CrossRefPubMedGoogle Scholar
  40. 40.
    Komarova S, Kawakami Y, Stoff-Khalili MA, Curiel DT, Pereboeva L (2006) Mesenchymal Progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol Cancer Ther 5(3):755–766CrossRefPubMedGoogle Scholar
  41. 41.
    Hou L, Wang X, Zhou Y, Ma H, Wang Z, He J et al (2014) Inhibitory effect and mechanism of mesenchymal stem cells on liver cancer cells. Tumour Biol 35(2):1239–1250CrossRefPubMedGoogle Scholar
  42. 42.
    Maestroni GJ, Hertens E, Galli P (1999) Factor(s) from nonmacrophage bone marrow stromal cells inhibit Lewis lung carcinoma and B16 melanoma growth in mice. Cell Mol Life Sci 55(4):663–667CrossRefPubMedGoogle Scholar
  43. 43.
    Nakamura K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H et al (2004) Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 11(14):1155–1164CrossRefPubMedGoogle Scholar
  44. 44.
    Heo JS, Choi Y, Kim HS, Kim HO (2016) Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med 37(1):115–125PubMedPubMedCentralGoogle Scholar
  45. 45.
    Qiao L, Xu Z, Zhao T, Zhao Z, Shi M, Zhao RC et al (2008) Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res 18(4):500–507CrossRefPubMedGoogle Scholar
  46. 46.
    You Q, Yao Y, Zhang Y, Fu S, Du M, Zhang G (2015) Effect of targeted ovarian cancer therapy using amniotic fluid mesenchymal stem cells transfected with enhanced green fluorescent protein-human interleukin-2 in vivo. Mol Med Rep 12(4):4859–4866PubMedPubMedCentralGoogle Scholar
  47. 47.
    Marone G, Varricchi G, Loffredo S, Granata F (2015) Mast cells and basophils in inflammatory and tumor angiogenesis and lymphangigenesis. Eur J Pharmacol. doi: 10.1016/j.ejphar.2015.03.088 PubMedGoogle Scholar
  48. 48.
    Akrami H, Aminzadeh S, Fallahi H (2015) Inhibitory effect of ibuprofen on tumor survival and angiogenesis in gastric cancer cell. Tumour Biol 36(5):3237–3243CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jingsi Zhang
    • 1
  • Lingling Hou
    • 1
    Email author
  • Xiaoyan Wu
    • 1
  • Diandian Zhao
    • 1
  • Ziling Wang
    • 1
  • Honggang Hu
    • 1
  • Yuanhui Fu
    • 1
  • Jinsheng He
    • 1
  1. 1.College of Life Sciences and Bioengineering, School of ScienceBeijing Jiaotong UniversityBeijingPeople’s Republic of China

Personalised recommendations