Galectin-3-induced cell spreading and motility relies on distinct signaling mechanisms compared to fibronectin

  • 302 Accesses

  • 6 Citations


Secreted galectin-3 often gets incorporated into extracellular matrix and is utilized by cancer cells for spreading, movement, and metastatic dissemination. Here we investigate molecular mechanisms by which galectin-3 brings about these effects and compare it with fibronectin. Imaging of cells spread on fibronectin showed stress fibers throughout cell body, however, galectin-3-induced formation of parallel actin bundles in the lamellipodial region resulting in unique morphological features. FRAP analysis showed that the actin turnover in the lamellipodial region was much higher in cells spread on galectin-3 as compared to that on fibronectin. Rac1 activation is correlated with lamellipodial organization on both the substrates. Activation of Akt and Rac1, the regulators of actin dynamics, show inverse correlation with each other on both galectin-3 and fibronectin. Activation of Erk however, remained similar. Further, inhibition of activation of Akt and Erk inhibited spreading and motility of cells on galectin-3 but not on fibronectin. The results very comprehensively demonstrate distinct signaling pathways that regulate microfilament organization, lamellipodial structures, spreading, and movement of cells plated on galectin-3 as opposed to fibronectin.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Bacac M, Stamenkovic I (2008) Metastatic cancer cell. Annu Rev Pathol 3:221–247. doi:10.1146/annurev.pathmechdis.3.121806.151523

  2. 2.

    Chiang AC, Massague J (2008) Molecular basis of metastasis. N Engl J Med 359(26):2814–2823. doi:10.1056/NEJMra0805239

  3. 3.

    Dumic J, Dabelic S, Flogel M (2006) Galectin-3: an open-ended story. Biochim Biophys Acta 1760(4):616–635. doi:10.1016/j.bbagen.2005.12.020

  4. 4.

    Barondes SH, Cooper DN, Gitt MA, Leffler H (1994) Galectins. Structure and function of a large family of animal lectins. J Biol Chem 269(33):20807–20810

  5. 5.

    Dange MC, Agarwal AK, Kalraiya RD (2015) Extracellular galectin-3 induces MMP9 expression by activating p38 MAPK pathway via lysosome-associated membrane protein-1 (LAMP1). Mol Cell Biochem 404(1–2):79–86. doi:10.1007/s11010-015-2367-5

  6. 6.

    Dange MC, Srinivasan N, More SK, Bane SM, Upadhya A, Ingle AD, Gude RP, Mukhopadhyaya R, Kalraiya RD (2014) Galectin-3 expressed on different lung compartments promotes organ specific metastasis by facilitating arrest, extravasation and organ colonization via high affinity ligands on melanoma cells. Clin Exp Metastasis 31(6):661–673. doi:10.1007/s10585-014-9657-2

  7. 7.

    Krishnan V, Bane SM, Kawle PD, Naresh KN, Kalraiya RD (2005) Altered melanoma cell surface glycosylation mediates organ specific adhesion and metastasis via lectin receptors on the lung vascular endothelium. Clin Exp Metastasis 22(1):11–24. doi:10.1007/s10585-005-2036-2

  8. 8.

    Srinivasan N, Bane SM, Ahire SD, Ingle AD, Kalraiya RD (2009) Poly N-acetyllactosamine substitutions on N- and not O-oligosaccharides or Thomsen-Friedenreich antigen facilitate lung specific metastasis of melanoma cells via galectin-3. Glycoconj J 26(4):445–456. doi:10.1007/s10719-008-9194-9

  9. 9.

    More SK, Srinivasan N, Budnar S, Bane SM, Upadhya A, Thorat RA, Ingle AD, Chiplunkar SV, Kalraiya RD (2015) N-glycans and metastasis in galectin-3 transgenic mice. Biochem Biophys Res Commun 460(2):302–307. doi:10.1016/j.bbrc.2015.03.030

  10. 10.

    Fortuna-Costa A, Gomes AM, Kozlowski EO, Stelling MP, Pavao MS (2014) Extracellular galectin-3 in tumor progression and metastasis. Front Oncol 4:138. doi:10.3389/fonc.2014.00138

  11. 11.

    Lagana A, Goetz JG, Cheung P, Raz A, Dennis JW, Nabi IR (2006) Galectin binding to Mgat5-modified N-glycans regulates fibronectin matrix remodeling in tumor cells. Mol Cell Biol 26(8):3181–3193. doi:10.1128/MCB.26.8.3181-3193.2006

  12. 12.

    Goetz JG, Joshi B, Lajoie P, Strugnell SS, Scudamore T, Kojic LD, Nabi IR (2008) Concerted regulation of focal adhesion dynamics by galectin-3 and tyrosine-phosphorylated caveolin-1. J Cell Biol 180(6):1261–1275. doi:10.1083/jcb.200709019

  13. 13.

    Boscher C, Nabi IR (2013) Galectin-3- and phospho-caveolin-1-dependent outside-in integrin signaling mediates the EGF motogenic response in mammary cancer cells. Mol Biol Cell 24(13):2134–2145. doi:10.1091/mbc.E13-02-0095

  14. 14.

    Saravanan C, Liu FT, Gipson IK, Panjwani N (2009) Galectin-3 promotes lamellipodia formation in epithelial cells by interacting with complex N-glycans on alpha3beta1 integrin. J Cell Sci 122(Pt 20):3684–3693. doi:10.1242/jcs.045674

  15. 15.

    Melo FH, Butera D, Junqueira Mde S, Hsu DK, da Silva AM, Liu FT, Santos MF, Chammas R (2011) The promigratory activity of the matricellular protein galectin-3 depends on the activation of PI-3 kinase. PLoS One 6(12):e29313. doi:10.1371/journal.pone.0029313

  16. 16.

    Jiang K, Rankin CR, Nava P, Sumagin R, Kamekura R, Stowell SR, Feng M, Parkos CA, Nusrat A (2014) Galectin-3 regulates desmoglein-2 and intestinal epithelial intercellular adhesion. J Biol Chem 289(15):10510–10517. doi:10.1074/jbc.M113.538538

  17. 17.

    Boscher C, Zheng YZ, Lakshminarayan R, Johannes L, Dennis JW, Foster LJ, Nabi IR (2012) Galectin-3 protein regulates mobility of N-cadherin and GM1 ganglioside at cell-cell junctions of mammary carcinoma cells. J Biol Chem 287(39):32940–32952. doi:10.1074/jbc.M112.353334

  18. 18.

    Kim SH, Turnbull J, Guimond S (2011) Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol 209(2):139–151. doi:10.1530/JOE-10-0377

  19. 19.

    Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196(4):395–406. doi:10.1083/jcb.201102147

  20. 20.

    Humphries JD, Byron A, Humphries MJ (2006) Integrin ligands at a glance. J Cell Sci 119(Pt 19):3901–3903. doi:10.1242/jcs.03098

  21. 21.

    Pankov R, Yamada KM (2002) Fibronectin at a glance. J Cell Sci 115(Pt 20):3861–3863

  22. 22.

    Plow EF, Haas TA, Zhang L, Loftus J, Smith JW (2000) Ligand binding to integrins. J Biol Chem 275(29):21785–21788. doi:10.1074/jbc.R000003200

  23. 23.

    Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687

  24. 24.

    Welch HC, Coadwell WJ, Stephens LR, Hawkins PT (2003) Phosphoinositide 3-kinase-dependent activation of Rac. FEBS Lett 546(1):93–97

  25. 25.

    Xue G, Hemmings BA (2013) PKB/Akt-dependent regulation of cell motility. J Natl Cancer Inst 105(6):393–404. doi:10.1093/jnci/djs648

  26. 26.

    Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2(2):91–100. doi:10.1038/nrc727

  27. 27.

    Huveneers S, Danen EH (2009) Adhesion signaling—crosstalk between integrins, Src and Rho. J Cell Sci 122(Pt 8):1059–1069. doi:10.1242/jcs.039446

  28. 28.

    Ridley A (2000) Rho GTPases. Integrating integrin signaling. J Cell Biol 150(4):F107–F109

  29. 29.

    Harburger DS, Calderwood DA (2009) Integrin signalling at a glance. J Cell Sci 122(Pt 2):159–163. doi:10.1242/jcs.018093

  30. 30.

    Schlaepfer DD, Jones KC, Hunter T (1998) Multiple Grb2-mediated integrin-stimulated signaling pathways to ERK2/mitogen-activated protein kinase: summation of both c-Src- and focal adhesion kinase-initiated tyrosine phosphorylation events. Mol Cell Biol 18(5):2571–2585

  31. 31.

    Schlaepfer DD, Mitra SK (2004) Multiple connections link FAK to cell motility and invasion. Curr Opin Genet Dev 14(1):92–101. doi:10.1016/j.gde.2003.12.002

  32. 32.

    Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH, Schlaepfer DD (2000) FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol 2(5):249–256. doi:10.1038/35010517

  33. 33.

    Wells A (2000) Tumor invasion: role of growth factor-induced cell motility. Adv Cancer Res 78:31–101

  34. 34.

    Agarwal AK, Srinivasan N, Godbole R, More SK, Budnar S, Gude RP, Kalraiya RD (2015) Role of tumor cell surface lysosome-associated membrane protein-1 (LAMP1) and its associated carbohydrates in lung metastasis. J Cancer Res Clin Oncol. doi:10.1007/s00432-015-1917-2

  35. 35.

    Pellegrin S, Mellor H (2008) Rho GTPase activation assays. Curr Protoc Cell Biol Chapter 14:Unit 14 8. doi:10.1002/0471143030.cb1408s38

  36. 36.

    Gumbiner BM (1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84(3):345–357

  37. 37.

    Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84(3):359–369

  38. 38.

    Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4):453–465

  39. 39.

    Small JV, Rottner K, Kaverina I, Anderson KI (1998) Assembling an actin cytoskeleton for cell attachment and movement. Biochim Biophys Acta 1404(3):271–281

  40. 40.

    Small JV, Stradal T, Vignal E, Rottner K (2002) The lamellipodium: where motility begins. Trends Cell Biol 12(3):112–120

  41. 41.

    Ridley AJ (2001) Rho GTPases and cell migration. J Cell Sci 114(Pt 15):2713–2722

  42. 42.

    Yamada KM, Araki M (2001) Tumor suppressor PTEN: modulator of cell signaling, growth, migration and apoptosis. J Cell Sci 114(Pt 13):2375–2382

  43. 43.

    Bozzuto G, Ruggieri P, Molinari A (2010) Molecular aspects of tumor cell migration and invasion. Annali dell’Istituto superiore di sanita 46(1):66–80. doi:10.4415/ANN_10_01_09

  44. 44.

    Vicente-Manzanares M, Webb DJ, Horwitz AR (2005) Cell migration at a glance. J Cell Sci 118(Pt 21):4917–4919. doi:10.1242/jcs.02662

  45. 45.

    Yamaguchi H, Wyckoff J, Condeelis J (2005) Cell migration in tumors. Curr Opin Cell Biol 17(5):559–564. doi:10.1016/

  46. 46.

    Han S, Khuri FR, Roman J (2006) Fibronectin stimulates non-small cell lung carcinoma cell growth through activation of Akt/mammalian target of rapamycin/S6 kinase and inactivation of LKB1/AMP-activated protein kinase signal pathways. Cancer Res 66(1):315–323. doi:10.1158/0008-5472.CAN-05-2367

  47. 47.

    King WG, Mattaliano MD, Chan TO, Tsichlis PN, Brugge JS (1997) Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation. Mol Cell Biol 17(8):4406–4418

  48. 48.

    Levy Y, Ronen D, Bershadsky AD, Zick Y (2003) Sustained induction of ERK, protein kinase B, and p70 S6 kinase regulates cell spreading and formation of F-actin microspikes upon ligation of integrins by galectin-8, a mammalian lectin. J Biol Chem 278(16):14533–14542. doi:10.1074/jbc.M207380200

  49. 49.

    Hirabayashi J, Hashidate T, Arata Y, Nishi N, Nakamura T, Hirashima M, Urashima T, Oka T, Futai M, Muller WE, Yagi F, Kasai K (2002) Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta 1572(2–3):232–254

  50. 50.

    Levy Y, Arbel-Goren R, Hadari YR, Eshhar S, Ronen D, Elhanany E, Geiger B, Zick Y (2001) Galectin-8 functions as a matricellular modulator of cell adhesion. J Biol Chem 276(33):31285–31295. doi:10.1074/jbc.M100340200

  51. 51.

    Przybylo M, Martuszewska D, Pochec E, Hoja-Lukowicz D, Litynska A (2007) Identification of proteins bearing beta1-6 branched N-glycans in human melanoma cell lines from different progression stages by tandem mass spectrometry analysis. Biochim Biophys Acta 1770(9):1427–1435. doi:10.1016/j.bbagen.2007.05.006

  52. 52.

    Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80(2):179–185

  53. 53.

    Nobes CD, Hall A (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81(1):53–62

  54. 54.

    Kwon T, Kwon DY, Chun J, Kim JH, Kang SS (2000) Akt protein kinase inhibits Rac1-GTP binding through phosphorylation at serine 71 of Rac1. J Biol Chem 275(1):423–428

  55. 55.

    Schwarz J, Proff J, Havemeier A, Ladwein M, Rottner K, Barlag B, Pich A, Tatge H, Just I, Gerhard R (2012) Serine-71 phosphorylation of Rac1 modulates downstream signaling. PLoS One 7(9):e44358. doi:10.1371/journal.pone.0044358

  56. 56.

    Cary LA, Han DC, Polte TR, Hanks SK, Guan JL (1998) Identification of p130Cas as a mediator of focal adhesion kinase-promoted cell migration. J Cell Biol 140(1):211–221

  57. 57.

    Petrie RJ, Doyle AD, Yamada KM (2009) Random versus directionally persistent cell migration. Nat Rev Mol Cell Biol 10(8):538–549. doi:10.1038/nrm2729

  58. 58.

    Ponti A, Machacek M, Gupton SL, Waterman-Storer CM, Danuser G (2004) Two distinct actin networks drive the protrusion of migrating cells. Science 305(5691):1782–1786. doi:10.1126/science.1100533

Download references


We dedicate this work to the memory of Late Dr. Rajiv D. Kalraiya, who was responsible for planning and supervision of this work. We acknowledge Dr. Hakon Leffler for providing E. coli BL21 star strain expressing recombinant human galectin-3 and Dr. Sorab Dalal for providing E. coli strain expressing GST-PAK1 fusion protein. We acknowledge Urjita Joshi for signaling pathway experiments, Vaishali Khailaje, Tanuja Dighe, and Jairaj Kashale for help in microscopy experiments, and D. S. Chavan and A. M. Pawar for the technical help during galectin-3 purification. We thank Council of Scientific and Industrial Research (CSIR), India for providing the fellowship to Shyam K. More and Department of Biotechnology (DBT), India for funding the project.

Author information

Correspondence to Shubhada V. Chiplunkar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Rajiv D. Kalraiya: Deceased.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

More, S.K., Chiplunkar, S.V. & Kalraiya, R.D. Galectin-3-induced cell spreading and motility relies on distinct signaling mechanisms compared to fibronectin. Mol Cell Biochem 416, 179–191 (2016).

Download citation


  • Galectin-3
  • Fibronectin
  • Microfilaments
  • Lamellipodia
  • Cell spreading
  • Cell migration