Molecular and Cellular Biochemistry

, Volume 416, Issue 1–2, pp 85–97 | Cite as

Metastasized lung cancer suppression by Morinda citrifolia (Noni) leaf compared to Erlotinib via anti-inflammatory, endogenous antioxidant responses and apoptotic gene activation

  • Swee-Ling Lim
  • Noordin M. Mustapha
  • Yong-Meng Goh
  • Nurul Ain Abu Bakar
  • Suhaila Mohamed
Article

Abstract

Metastasized lung and liver cancers cause over 2 million deaths annually, and are amongst the top killer cancers worldwide. Morinda citrifolia (Noni) leaves are traditionally consumed as vegetables in the tropics. The macro and micro effects of M. citrifolia (Noni) leaves on metastasized lung cancer development in vitro and in vivo were compared with the FDA-approved anti-cancer drug Erlotinib. The extract inhibited the proliferation and induced apoptosis in A549 cells (IC50 = 23.47 μg/mL) and mouse Lewis (LL2) lung carcinoma cells (IC50 = 5.50 μg/mL) in vitro, arrested cancer cell cycle at G0/G1 phases and significantly increased caspase-3/-8 without changing caspase-9 levels. The extract showed no toxicity on normal MRC5 lung cells. Non-small-cell lung cancer (NSCLC) A549-induced BALB/c mice were fed with 150 and 300 mg/kg M. citrifolia leaf extract and compared with Erlotinib (50 mg/kg body weight) for 21 days. It significantly increased the pro-apoptotic TRP53 genes, downregulated the pro-tumourigenesis genes (BIRC5, JAK2/STAT3/STAT5A) in the mice tumours, significantly increased the anti-inflammatory IL4, IL10 and NR3C1 expression in the metastasized lung and hepatic cancer tissues and enhanced the NFE2L2-dependent antioxidant responses against oxidative injuries. The extract elevated serum neutrophils and reduced the red blood cells, haemoglobin, corpuscular volume and cell haemoglobin concentration in the lung cancer-induced mammal. It suppressed inflammation and oedema, and upregulated the endogenous antioxidant responses and apoptotic genes to suppress the cancer. The 300 mg/kg extract was more effective than the 50 mg/kg Erlotinib for most of the parameters measured.

Keywords

NFE2L2 Differential counts IL4 IL10 NR3C1 TRP53 BCL2 

Notes

Acknowledgments

This study was supported by the Herbal Development Office, Ministry of Agriculture (Grant No. NH05135009).

Compliance with ethical standards

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. 1.
    Jemal A, Bray F, Center M (2011) Global cancer statistics. CA Cancer J Clin 61:69–90CrossRefPubMedGoogle Scholar
  2. 2.
    Spiro S, Tanner N, Silvestri G et al (2010) Lung cancer: progress in diagnosis, staging and therapy. Respirology 15:44–50CrossRefPubMedGoogle Scholar
  3. 3.
    Politi K, Fan P, Shen R et al (2010) Erlotinib resistance in mouse models of epidermal growth factor receptor-induced lung adenocarcinoma. Dis Model Mech 3:111–119CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Forrest L, McMillan D, McArdle C et al (2003) Evaluation of cumulative prognostic scores based on the systemic inflammatory response in patients with inoperable non-small-cell lung cancer. Br J Cancer 89:1028–1030CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lim C, Junit S, Abdulla M, Aziz A (2013) In vivo biochemical and gene expression analyses of the antioxidant activities and hypocholesterolaemic properties of tamarindus indica fruit pulp extract. PLoS ONE 8:e70058CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Amir M, Javed S, Kumar H (2010) Design and synthesis of 3-[3-(substituted phenyl)-4-piperidin-1-ylmethyl/-4-morpholin-4-ylmethyl-4,5-dihydro-isoxazol-5-yl]-1H-indoles as potent anti-inflammatory agents. Med Chem Res 19:299–310CrossRefGoogle Scholar
  7. 7.
    Holmes G, Dixon G, Anderson S, et al. (2012) Drift-diffusion analysis of neutrophil migration during inflammation resolution in a zebrafish model. Advances in hematology, vol. 8Google Scholar
  8. 8.
    Trellakis S, Farjah H, Bruderek K et al (2010) Peripheral blood neutrophil granulocytes from patients with head and neck squamous cell carcinoma functionally differ from their counterparts in healthy donors. Int J Immunopathol Pharmacol 24:683–693Google Scholar
  9. 9.
    Kanduc D, Mittelman A, Serpico R et al (2002) Cell death: apoptosis versus necrosis (Review). Int J Oncol 21:165–170PubMedGoogle Scholar
  10. 10.
    Hu Y, Ju Y, Lin D et al (2012) Mutation of the Nrf2 gene in non-small cell lung cancer. Mol Biol Rep 39:4743–4747CrossRefPubMedGoogle Scholar
  11. 11.
    Papaiahgari S, Zhang Q, Kleeberger S et al (2006) Hyperoxia stimulates an Nrf2-ARE transcriptional response via ROS-EGFR-PI3K-Akt/ERK MAP kinase signaling in pulmonary epithelial cells. Antioxid Redox Signal 8:43–52CrossRefPubMedGoogle Scholar
  12. 12.
    Li W, Khor T, Xu C et al (2008) Activation of Nrf2-antioxidant signaling attenuates NFκB-inflammatory response and elicits apoptosis. Biochem Pharmacol 76:1485–1489CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Enomoto A, Itoh K, Nagayoshi E et al (2001) High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes. Toxicol Sci 59:169–177CrossRefPubMedGoogle Scholar
  14. 14.
    Kim H, Vaziri N (2010) Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure. Am J Physiol 298:F662–F671Google Scholar
  15. 15.
    West B, Tani H, Palu A et al (2007) Safety tests and antinutrient analyses of noni (Morinda citrifolia L.) leaf. J Sci Food Agric 87:2583–2588CrossRefPubMedGoogle Scholar
  16. 16.
    Lagarto A, Bueno V, Merino N (2013) Safety evaluation of Morinda citrifolia (noni) leaves extract: assessment of genotoxicity, oral short term and subchronic toxicity. J Intercult Ethnopharmacol 2:15–22CrossRefGoogle Scholar
  17. 17.
    Deng S, West B, Jensen C (2010) A quantitative comparison of phytochemical components in global noni fruits and their commercial products. Food Chem 122:267–270CrossRefGoogle Scholar
  18. 18.
    Muhammad Nadzri N, Abdul A, Sukari M, et al. (2013) Inclusion complex of zerumbone with hydroxypropyl-β-cyclodextrin induces apoptosis in liver hepatocellular HepG2 cells via caspase 8/BID cleavage switch and modulating BCL2/Bax ratio. Evidence-Based Complementary and Alternative Medicine, vol. 16Google Scholar
  19. 19.
    Lu Z, Song Q, Jiang S, Wang W (2009) Identification of ATP synthase beta subunit (ATPB) on the cell surface as a non-small cell lung cancer (NSCLC) associated antigen. BMC Cancer 9:16CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kurai J, Chikumi H, Hashimoto K et al (2007) Antibody-dependent cellular cytotoxicity mediated by cetuximab against lung cancer cell lines. Clin Cancer Res 13:1552–1561CrossRefPubMedGoogle Scholar
  21. 21.
    Lim S, Goh Y, Mustapha N, Rahman HS, Othman H, AbuBakar N, Mohamed S (2016) Morinda citrifolia edible leaves extract enhanced immune response against lung cancer. Food Funct. doi:10.1039/C5FO01475A PubMedGoogle Scholar
  22. 22.
    Liu X, Zhang L, Fu X et al (2001) Effect of scopoletin on PC3 cell proliferation and apoptosis. Acta Pharmacol Sin 22:929–933PubMedGoogle Scholar
  23. 23.
    Kim E, Kwon K, Shin B et al (2005) Scopoletin induces apoptosis in human promyeloleukemic cells, accompanied by activations of nuclear factor κB and caspase-3. Life Sci 77:824–836CrossRefPubMedGoogle Scholar
  24. 24.
    Saha A, Kuzuhara T, Echigo N et al (2010) New role of (−)-epicatechin in enhancing the induction of growth inhibition and apoptosis in human lung cancer cells by curcumin. Cancer Prev Res 3:953–962CrossRefGoogle Scholar
  25. 25.
    Babich H, Krupka ME, Nissim HA, Zuckerbraun HL (2005) Differential in vitro cytotoxicity of (−)-epicatechin gallate (ECG) to cancer and normal cells from the human oral cavity. Toxicol In Vitro 19:231–242CrossRefPubMedGoogle Scholar
  26. 26.
    Choudhury D, Das A, Bhattacharya A, Chakrabarti G (2010) Aqueous extract of ginger shows antiproliferative activity through disruption of microtubule network of cancer cells. Food Chem Toxicol 48:2872–2880CrossRefPubMedGoogle Scholar
  27. 27.
    Mohan S, Bustamam A, Ibrahim S, et al. (2011) In vitro ultramorphological assessment of apoptosis on CEMss induced by linoleic acid-rich fraction from typhonium flagelliforme tuber. Evidence-Based Complementary and alternative medicine, vol. 12Google Scholar
  28. 28.
    Pao W, Chmielecki J (2010) Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat Rev Cancer 10:760–774CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Brugger W, Triller N, Blasinska-Morawiec M et al (2011) Prospective molecular marker analyses of EGFR and KRAS from a randomized, placebo-controlled study of erlotinib maintenance therapy in advanced non-small-cell lung cancer. J Clin Oncol 29:4113–4120CrossRefPubMedGoogle Scholar
  30. 30.
    Kung Y, Lin C, Liaw S et al (2011) Effects of erlotinib on pulmonary function and airway remodeling after sensitization and repeated allergen challenge in Brown-Norway rats. Respir Physiol Neurobiol 175:349–356CrossRefPubMedGoogle Scholar
  31. 31.
    Liontas A, Yeger H (2004) Curcumin and resveratrol induce apoptosis and nuclear translocation and activation of p53 in human neuroblastoma. Anticancer Res 24:987–998PubMedGoogle Scholar
  32. 32.
    Fischer B, Coelho D, Dufour P et al (2003) Caspase 8-mediated cleavage of the pro-apoptotic BCL-2 family member BID in p53-dependent apoptosis. Biochem Biophys Res Commun 306:516–522CrossRefPubMedGoogle Scholar
  33. 33.
    Javid J, Mir A, Ahamad I et al (2012) Impact of MDM2 SNP309T>G Polymorphism: increased risk of developing non small cell lung cancer and poor prognosis in Indian patients. J Cancer Sci Ther 04:341–346Google Scholar
  34. 34.
    Mita A, Mita M, Nawrocki S, Giles F (2008) Survivin: key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clin Cancer Res 14:5000–5005CrossRefPubMedGoogle Scholar
  35. 35.
    Kren L, Brazdil J, Hermanova M et al (2004) Prognostic significance of anti-apoptosis proteins survivin and bcl-2 in non-small cell lung carcinomas: a clinicopathologic study of 102 cases. Appl Immunohistochem Mol Morphol 12:44–49CrossRefPubMedGoogle Scholar
  36. 36.
    Zhao M, Gao F, Wang J et al (2011) JAK2/STAT3 signaling pathway activation mediates tumor angiogenesis by upregulation of VEGF and bFGF in non-small-cell lung cancer. Lung Cancer 73:366–374CrossRefPubMedGoogle Scholar
  37. 37.
    Bhattacharya S, Ray R, Johnson L (2005) STAT3-mediated transcription of Bcl-2, Mcl-1 and c-IAP2 prevents apoptosis in polyamine-depleted cells. Biochem J 392:335–344CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Niu G, Wright K, Ma Y et al (2005) Role of Stat3 in regulating p53 expression and function. Mol Cell Biol 25:7432–7440CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Flowers L (2013) Targeting JAK-STAT signal transduction pathways in human carcinomas. Int J Biosci 3:241–250CrossRefGoogle Scholar
  40. 40.
    Patel K, Ferrucci L, Ershler W et al (2009) Red blood cell distribution width and the risk of death in middle-aged and older adults. Arch Intern Med 169:515–523CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Baicus C, Caraiola S, Rimbas M et al (2011) Utility of routine hematological and inflammation parameters for the diagnosis of cancer in involuntary weight loss. J Investig Med 59:951–955PubMedGoogle Scholar
  42. 42.
    Opal S, Depalo V (2000) Anti-inflammatory cytokines. CHEST J 117:1162–1172CrossRefGoogle Scholar
  43. 43.
    Beppu M, Ikebe T, Shirasuna K (2002) The inhibitory effects of immunosuppressive factors, dexamethasone and interleukin-4, on NF-κB-mediated protease production by oral cancer. Biochim Biophys Acta 1586:11–22CrossRefPubMedGoogle Scholar
  44. 44.
    Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401CrossRefPubMedGoogle Scholar
  45. 45.
    Giacomelli L, Gianni W, Belfiore C et al (2003) Persistence of epidermal growth factor receptor and interleukin 10 in blood of colorectal cancer patients after surgery identifies patients with high risk to relapse. Clin Cancer Res 9:2678–2682PubMedGoogle Scholar
  46. 46.
    Mocellin S, Marincola F, Young H (2005) Interleukin-10 and the immune response against cancer: a counterpoint. J Leukoc Biol 78:1043–1051CrossRefPubMedGoogle Scholar
  47. 47.
    Segal B, Glass D, Shevach E (2002) Cutting edge: IL-10-producing CD4+ T cells mediate tumor rejection. J Immunol 168:1–4CrossRefPubMedGoogle Scholar
  48. 48.
    Mueller M, Hobiger S, Jungbauer A (2010) Anti-inflammatory activity of extracts from fruits, herbs and spices. Food Chem 122:987–996CrossRefGoogle Scholar
  49. 49.
    De Bosscher K, Haegeman G, Elewaut D (2010) Targeting inflammation using selective glucocorticoid receptor modulators. Curr Opin Pharmacol 10:497–504CrossRefPubMedGoogle Scholar
  50. 50.
    Theriault A, Wang Q, Van Iderstine S et al (2000) Modulation of hepatic lipoprotein synthesis and secretion by taxifolin, a plant flavonoid. J Lipid Res 41:1969–1979PubMedGoogle Scholar
  51. 51.
    Shaw C, Chen C, Hsu C et al (2003) Antioxidant properties of scopoletin isolated from Sinomonium acutum. Phyther Res 17:823–825CrossRefGoogle Scholar
  52. 52.
    Shah Z, Li R, Ahmad A et al (2010) The flavanol (−)-epicatechin prevents stroke damage through the Nrf2/HO1 pathway. J Cereb Blood Flow Metab 30:1951–1961CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.UPM-MAKNA Cancer Research Laboratory, Institute of BioscienceUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Faculty of Veterinary MedicineUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations