Molecular and Cellular Biochemistry

, Volume 415, Issue 1–2, pp 89–102 | Cite as

Differential effect of Se on insulin resistance: regulation of adipogenesis and lipolysis



Insulin resistance is the characteristic of type 2 diabetes mellitus and metabolic disorder. The biological effect of selenium (Se) on insulin sensitivity and metabolic function was contradictory. In this study, we designed two animal protocols to investigate the effect of physiological Se on high-fat (HF) diet-induced insulin resistance in mice and examined the influence of Se on adipocyte differentiation and lipolysis in isolated bone marrow stromal stem cells. The results showed that pre-treatment with Se, mimicking thiazolidinediones, increased adipocyte differentiation and fat deposit in adipose tissue and reduced ectopic lipid content and consequent ROS generation and mitochondrial dysfunction in livers, protecting against HF diet-induced insulin resistance. Post-treatment with Se promoted lipolysis in adipose tissue and ectopic lipid accumulation in livers and aggravated subsequent ROS generation and mitochondrial dysfunction, exacerbating insulin resistance induced by HF diet. Activation of GPx1 and Sepp1 was responsible for Se-exhibited bi-directional significance, which was at the crossroad of the biological effect of Se, leading to differential directions: one way is to accelerate mitotic clonal expansion and increase key regulators of adipocyte differentiation, such as PPARγ and C/EBPα/β, leading to enhancement of adipogenic differentiation; the other way is to activate PKA/HSL pathway, reinforcing lipolysis. Further studies are needed to elucidate the mechanism underlying GPx1 and Sepp1-exerted differential effects under different conditions. Anyhow, these findings may partly explain the contradiction of the biological significance of Se and demonstrate a novel understanding of the mechanism of Se-exerted benefit or harmful effects in the context of high consumption of fat.


Selenium Insulin resistance High-fat diet Adipocyte differentiation Lipolysis 



Bone marrow stromal cells


CCAAT enhancer binding protein α


CCAAT enhancer binding protein β


Fatty acid oxidation


Free fatty acids


Glutathione peroxidase 1


High fat


Hormone sensitive lipase


Mitotic clonal expansion


Mitochondrial membrane potential


Mercaptosuccinic acid


Mitochondrial DNA


Mitochondrial oxidative phosphorylation


Peroxisome proliferator activated receptor γ


Reactive oxygen species




Selenoprotein 1


Type 2 diabetes mellitus


Transmission electron microscopy


Trichloroacetic acid





Supplementary material

11010_2016_2679_MOESM1_ESM.docx (93 kb)
Supplementary material 1 (DOCX 93 kb)


  1. 1.
    Houstis N, Rosen ED, Lander ES (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440:944–948CrossRefPubMedGoogle Scholar
  2. 2.
    Anderson PJ, Critchley JA, Chan JC, Cockram CS, Lee ZS, Thomas GN, Tomlinson B (2001) Factor analysis of the metabolic syndrome: obesity vs insulin resistance as the central abnormality. Int J Obes Relat Metab Disord 25:1782–1788CrossRefPubMedGoogle Scholar
  3. 3.
    Kljai K, Runje R (2001) Selenium and glycogen levels in diabetic patients. Biol Trace Elem Res 83:223–229CrossRefPubMedGoogle Scholar
  4. 4.
    Park K, Rimm EB, Siscovick DS, Spiegelman D, Manson JE, Morris JS, Hu FB, Mozaffarian D (2012) Toenail selenium and incidence of type 2 diabetes in u.s. Men and women. Diabetes Care 35:1544–1551CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Stranges S, Marshall JR, Natarajan R, Donahue RP, Trevisan M, Combs GF, Cappuccio FP, Ceriello A, Reid ME (2007) Effects of long-term selenium supplementation on the incidence of type 2 diabetes: a randomized trial. Ann Intern Med 147:217–223CrossRefPubMedGoogle Scholar
  6. 6.
    Bleys J, Navas-Acien A, Guallar E (2007) Serum selenium and diabetes in U.S. adults. Diabetes Care 30:829–834CrossRefPubMedGoogle Scholar
  7. 7.
    Stranges S, Sieri S, Vinceti M, Grioni S, Guallar E, Laclaustra M, Muti P, Berrino F, Krogh V (2010) A prospective study of dietary selenium intake and risk of type 2 diabetes. BMC Public Health 10:564CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Stranges S, Galletti F, Farinaro E, D’Elia L, Russo O, Iacone R, Capasso C, Carginale V, De Luca V, Della VE, Cappuccio FP, Strazzullo P (2011) Associations of selenium status with cardiometabolic risk factors: an 8-year follow-up analysis of the Olivetti Heart study. Atherosclerosis 217:274–278CrossRefPubMedGoogle Scholar
  9. 9.
    Laclaustra M, Stranges S, Navas-Acien A, Ordovas JM, Guallar E (2010) Serum selenium and serum lipids in US adults: National Health and Nutrition Examination Survey (NHANES) 2003-2004. Atherosclerosis 210:643–648CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bleys J, Navas-Acien A, Stranges S, Menke A, Miller ER, Guallar E (2008) Serum selenium and serum lipids in US adults. Am J Clin Nutr 88:416–423PubMedPubMedCentralGoogle Scholar
  11. 11.
    Stranges S, Laclaustra M, Ji C, Cappuccio FP, Navas-Acien A, Ordovas JM, Rayman M, Guallar E (2010) Higher selenium status is associated with adverse blood lipid profile in British adults. J Nutr 140:81–87CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Whanger P, Vendeland S, Park YC, Xia Y (1996) Metabolism of subtoxic levels of selenium in animals and humans. Ann Clin Lab Sci 26:99–113PubMedGoogle Scholar
  13. 13.
    Zeng MS, Li X, Liu Y, Zhao H, Zhou JC, Li K, Huang JQ, Sun LH, Tang JY, Xia XJ, Wang KN, Lei XG (2012) A high-selenium diet induces insulin resistance in gestating rats and their offspring. Free Radic Biol Med 52:1335–1342CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wang X, Zhang W, Chen H, Liao N, Wang Z, Zhang X, Hai C (2014) High selenium impairs hepatic insulin sensitivity through opposite regulation of ROS. Toxicol Lett 224:16–23CrossRefPubMedGoogle Scholar
  15. 15.
    Wang X, Gu C, He W, Ye X, Chen H, Zhang X, Hai C (2012) Glucose oxidase induces insulin resistance via influencing multiple targets in vitro and in vivo: the central role of oxidative stress. Biochimie. doi:10.1016/j.biochi.2012.03.024: PubMedCentralGoogle Scholar
  16. 16.
    Wang X, Liu R, Zhang W, Zhang X, Liao N, Wang Z, Li W, Qin X, Hai C (2013) Oleanolic acid improves hepatic insulin resistance via antioxidant, hypolipidemic and anti-inflammatory effects. Mol Cell Endocrinol 376:70–80CrossRefPubMedGoogle Scholar
  17. 17.
    Biver G, Wang N, Gartland A, Orriss I, Arnett TR, Boeynaems JM, Robaye B (2013) Role of the P2Y13 receptor in the differentiation of bone marrow stromal cells into osteoblasts and adipocytes. Stem Cells 31:2747–2758CrossRefPubMedGoogle Scholar
  18. 18.
    Wang X, Yang P, Liu J, Wu H, Yu W, Zhang T, Fu H, Liu Y, Hai C (2014) RARγ-C-Fos-PPARγ2 signaling rather than ROS generation is critical for all-trans retinoic acid-inhibited adipocyte differentiation. Biochimie 106:121–130CrossRefPubMedGoogle Scholar
  19. 19.
    Lettner A, Roden M (2008) Ectopic fat and insulin resistance. Curr Diabetes Rep 8:185–191CrossRefGoogle Scholar
  20. 20.
    Boren J, Taskinen MR, Olofsson SO, Levin M (2013) Ectopic lipid storage and insulin resistance: a harmful relationship. J Intern Med 274:25–40CrossRefPubMedGoogle Scholar
  21. 21.
    Hassan A, Ahn J, Suh Y, Choi YM, Chen P, Lee K (2014) Selenium promotes adipogenic determination and differentiation of chicken embryonic fibroblasts with regulation of genes involved in fatty acid uptake, triacylglycerol synthesis and lipolysis. J Nutr Biochem 25:858–867CrossRefPubMedGoogle Scholar
  22. 22.
    Sharma AM, Staels B (2007) Review: peroxisome proliferator-activated receptor gamma and adipose tissue—understanding obesity-related changes in regulation of lipid and glucose metabolism. J Clin Endocrinol Metab 92:386–395CrossRefPubMedGoogle Scholar
  23. 23.
    Kepez A, Oto A, Dagdelen S (2006) Peroxisome proliferator-activated receptor-gamma: novel therapeutic target linking adiposity, insulin resistance, and atherosclerosis. Biodrugs 20:121–135CrossRefPubMedGoogle Scholar
  24. 24.
    Jay MA, Ren J (2007) Peroxisome proliferator-activated receptor (PPAR) in metabolic syndrome and type 2 diabetes mellitus. Curr Diabetes Rev 3:33–39CrossRefPubMedGoogle Scholar
  25. 25.
    Wang X, Gu C, He W, Ye X, Chen H, Zhang X, Hai C (2012) Glucose oxidase induces insulin resistance via influencing multiple targets in vitro and in vivo: the central role of oxidative stress. Biochimie 94:1017–1705CrossRefGoogle Scholar
  26. 26.
    Nakamura S, Takamura T, Matsuzawa-Nagata N, Takayama H, Misu H, Noda H, Nabemoto S, Kurita S, Ota T, Ando H, Miyamoto K, Kaneko S (2009) Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria. J Biol Chem 284:14809–14818CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820CrossRefPubMedGoogle Scholar
  28. 28.
    Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM (2000) Transcriptional regulation of adipogenesis. Genes Dev 14:1293–1307PubMedGoogle Scholar
  29. 29.
    Gregoire FM, Smas CM, Sul HS (1998) Understanding adipocyte differentiation. Physiol Rev 78:783–809PubMedGoogle Scholar
  30. 30.
    Rosen ED, MacDougald OA (2006) Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7:885–896CrossRefPubMedGoogle Scholar
  31. 31.
    Farmer SR (2006) Transcriptional control of adipocyte formation. Cell Metab 4:263–273CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lefterova MI, Lazar MA (2009) New developments in adipogenesis. Trends Endocrinol Metab 20:107–114CrossRefPubMedGoogle Scholar
  33. 33.
    Tontonoz P, Spiegelman BM (2008) Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem 77:289–312CrossRefPubMedGoogle Scholar
  34. 34.
    Carmen GY, Victor SM (2006) Signalling mechanisms regulating lipolysis. Cell Signal 18:401–408CrossRefPubMedGoogle Scholar
  35. 35.
    Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigo R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300:1439–1443CrossRefPubMedGoogle Scholar
  36. 36.
    Steinbrenner H, Alili L, Bilgic E, Sies H, Brenneisen P (2006) Involvement of selenoprotein P in protection of human astrocytes from oxidative damage. Free Radic Biol Med 40:1513–1523CrossRefPubMedGoogle Scholar
  37. 37.
    Steinbrenner H, Sies H (2009) Protection against reactive oxygen species by selenoproteins. Biochim Biophys Acta 1790:1478–1485CrossRefPubMedGoogle Scholar
  38. 38.
    Steinbrenner H, Bilgic E, Alili L, Sies H, Brenneisen P (2006) Selenoprotein P protects endothelial cells from oxidative damage by stimulation of glutathione peroxidase expression and activity. Free Radic Res 40:936–943CrossRefPubMedGoogle Scholar
  39. 39.
    McClung JP, Roneker CA, Mu W, Lisk DJ, Langlais P, Liu F, Lei XG (2004) Development of insulin resistance and obesity in mice overexpressing cellular glutathione peroxidase. Proc Natl Acad Sci USA 101:8852–8857CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Zhang Y, Chen X (2011) Reducing selenoprotein P expression suppresses adipocyte differentiation as a result of increased preadipocyte inflammation. Am J Physiol Endocrinol Metab 300:E77–E85CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lee H, Lee YJ, Choi H, Ko EH, Kim JW (2009) Reactive oxygen species facilitate adipocyte differentiation by accelerating mitotic clonal expansion. J Biol Chem 284:10601–10609CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Saitoh Y, Xiao L, Mizuno H, Kato S, Aoshima H, Taira H, Kokubo K, Miwa N (2010) Novel polyhydroxylated fullerene suppresses intracellular oxidative stress together with repression of intracellular lipid accumulation during the differentiation of OP9 preadipocytes into adipocytes. Free Radic Res 44:1072–1081CrossRefPubMedGoogle Scholar
  43. 43.
    Pinney DF, Emerson CP Jr (1989) 10T1/2 cells: an in vitro model for molecular genetic analysis of mesodermal determination and differentiation. Environ Health Perspect 80:221–227CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Pessler-Cohen D, Pekala PH, Kovsan J, Bloch-Damti A, Rudich A, Bashan N (2006) GLUT4 repression in response to oxidative stress is associated with reciprocal alterations in C/EBP alpha and delta isoforms in 3T3-L1 adipocytes. Arch Physiol Biochem 112:3–12CrossRefPubMedGoogle Scholar
  45. 45.
    Carrière A, Fernandez Y, Rigoulet M, Penicaud L, Casteilla L (2003) Inhibition of preadipocyte proliferation by mitochondrial reactive oxygen species. FEBS Lett 550:163–167CrossRefPubMedGoogle Scholar
  46. 46.
    Vinceti M, Dennert G, Crespi CM, Zwahlen M, Brinkman M, Zeegers MP, Horneber M, D’Amico R, Del GC (2014) Selenium for preventing cancer. Cochrane Database Syst Rev 3:D5195Google Scholar
  47. 47.
    Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN (2014) Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem Sci 39:112–120CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi’anChina
  2. 2.The First Brigade of StudentFourth Military Medical UniversityXi’anChina

Personalised recommendations