Molecular and Cellular Biochemistry

, Volume 414, Issue 1–2, pp 37–46 | Cite as

microRNA-128 regulates the proliferation and differentiation of bovine skeletal muscle satellite cells by repressing Sp1

  • Yang Dai
  • Wei Ran Zhang
  • Yi Min Wang
  • Xin Feng Liu
  • Xin Li
  • Xiang Bin DingEmail author
  • Hong GuoEmail author


MicroRNAs (miRNAs) play essential roles in muscle cell proliferation and differentiation. The muscle-specific miRNAs miR-1 and miR-206 have been shown to regulate muscle development and promote myogenic differentiation; however, it is likely that a number of other miRNAs play important roles in regulating myogenesis as well. microRNA-128 (miR-128) has been reported to be highly expressed in brain and skeletal muscle, and we found that miR-128 is also up-regulated during bovine skeletal muscle satellite cell differentiation using microarray analysis and qRT-PCR. However, little is known about the functions of miR-128 in bovine skeletal muscle satellite cell development. In this study, we investigated the biological functions of miR-128 in bovine skeletal muscle cell development. Using a dual-luciferase reporter assay, we confirmed that miR-128 regulates the Sp1 gene. Over-expression of miR-128 reduced Sp1 protein levels and inhibited muscle satellite cell proliferation and differentiation. Inhibition of miR-128 increased Sp1 protein levels and promoted muscle satellite cell differentiation but also suppressed proliferation. Changes in miR-128 and Sp1 expression levels also affected the protein levels of MyoD and CDKN1A. Sp1, an activator of MyoD and a suppressor of CDKN1A, plays an important role in bovine muscle cell proliferation and differentiation. The results of our study reveal a mechanism by which miR-128 regulates bovine skeletal muscle satellite cell proliferation and myogenic differentiation via Sp1.


Bovine Skeletal muscle satellite cells Microrna-128 Sp1 Myogenic differentiation 



This work was supported by the National Natural Science Foundation of China (31201021), Natural Science Foundation of Tianjin (13JCQNJC14600), the Open Subjects for the Major Basic Research Program of Science and Technology Department of Inner Mongolia Autonomous Region (20130902), the Excellent Young Teachers Program of Tianjin (J010070514), and the Second-level Candidates Training Project of 131 Innovative Talents of Tianjin (J01005021104).

Compliance with ethical standard

Conflict of interests

The authors declare that they have no conflict of interest.


  1. 1.
    Weintraub H (1993) The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell 75:1241–1244CrossRefPubMedGoogle Scholar
  2. 2.
    Bartel DP (2004) MicroRNAs-genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRefPubMedGoogle Scholar
  3. 3.
    Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349CrossRefPubMedGoogle Scholar
  4. 4.
    Callis TE, Wang DZ (2008) Taking microRNAs to heart. Trends Mol Med 14:254–260CrossRefPubMedGoogle Scholar
  5. 5.
    van Rooij E, Liu N, Olson EN (2008) MicroRNAs flex their muscles. Trends Genet 24:159–166CrossRefPubMedGoogle Scholar
  6. 6.
    Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38:228–233CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kim HK, Lee YS, Sivaprasad U, Malhotra A, Dutta A (2006) Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol 174:677–687CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Rao PK, Kumar RM, Farkhondeh M, Baskerville S, Lodish HF (2006) Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci USA 103:8721–8726CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Crist CG, Montarras D, Pallafacchina G, Rocancourt D, Cumano A, Conway SJ, Buckingham M (2009) Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc Natl Acad Sci USA 106:13383–13387CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ge Y, Sun Y, Chen J (2011) IGF-II is regulated by microRNA-125b in skeletal myogenesis. J Cell Biol 192:69–81CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Liu J, Luo XJ, Xiong AW, Zhang ZD, Yue S, Zhu MS, Cheng SY (2010) MicroRNA-214 promotes myogenic differentiation by facilitating exit from mitosis via down-regulation of proto-oncogene N-ras. J Biol Chem 285:26599–26607CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M, Cuvellier S, Harel-Bellan A (2006) The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol 8:278–284CrossRefPubMedGoogle Scholar
  13. 13.
    Sun Q, Zhang Y, Yang G, Chen X, Zhang Y, Cao G, Wang J, Sun Y, Zhang P, Fan M, Shao N, Yang X (2008) Transforming growth factor-beta-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res 36:2690–2699CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wong CF, Tellam RL (2008) MicroRNA-26a targets the histone methyltransferase Enhancer of Zeste homolog 2 during myogenesis. J Biol Chem 283:9836–9843CrossRefPubMedGoogle Scholar
  15. 15.
    Zhang J, Ying ZZ, Tang ZL, Long LQ, Li K (2012) MicroRNA-148a promotes myogenic differentiation by targeting the ROCK1 gene. J Biol Chem 287:21093–21101CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Motohashi N, Alexander MS, Shimizu-Motohashi Y, Myers JA, Kawahara G, Kunkel LM (2013) Regulation of IRS1/Akt insulin signaling by microRNA-128a during myogenesis. J Cell Sci 126:2678–2691CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wang YM, Ding XB, Dai Y, Liu XF, Guo H, Zhang Y (2015) Identification and bioinformatics analysis of miRNAs involved in bovine skeletal muscle satellite cell myogenic differentiation. Mol Cell Biochem 404:113–122CrossRefPubMedGoogle Scholar
  18. 18.
    Georgantas RW III, Hildreth R, Morisot S, Alder J, Liu CG, Heimfeld S, Calin GA, Croce CM, Civin CI (2007) CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc Natl Acad Sci USA 104:2750–2755CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Motohashi N, Alexander MS, Casar JC, Kunkel LM (2012) Identification of a novel microRNA that regulates the proliferation and differentiation in muscle side population cells. Stem Cells Dev 21:3031–3043CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Smirnova L, Gräfe A, Seiler A, Schumacher S, Nitsch R, Wulczyn FG (2005) Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21:1469–1477CrossRefPubMedGoogle Scholar
  21. 21.
    Dong Q, Cai N, Tao T, Zhang R, Yan W, Li R, Zhang J, Luo H, Shi Y, Luan W, Zhang Y, You Y, Wang Y, Liu N (2014) An axis involving SNAI1, microRNA-128 and Sp1 modulates glioma progression. PLoS One 9(6):e98651CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Guo CS, Catherine D, Troy AF, Stauffer D, Thayer MJ (2003) Regulation of MyoD activity and muscle cell differentiation by MDM2, pRb, and Sp1. J Biol Chem 278:22615–22622CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang T, Jiang T, Zhang F, Li C, Zhou YA, Zhu YF, Li XF (2010) Involvement of p21Waf1/Cip1 cleavage during roscovitine induced apoptosis in non small cell lung cancer cells. Oncol Rep 23(1):239–245PubMedGoogle Scholar
  24. 24.
    Dai Y, Wang YM, Zhang WR, Liu XF, Li X, Ding XB, Guo H (2015) The role of microRNA-1 and microRNA-206 in the proliferation and differentiation of bovine skeletal muscle satellite cells. In Vitro Cell Dev Biol-Anim. doi: 10.1007/s11626-015-9953-4 Google Scholar
  25. 25.
    Buckingham M (1992) Making muscle in mammals. Trends Genet 8:144–149CrossRefPubMedGoogle Scholar
  26. 26.
    Emerson CP (1990) Myogenesis and developmental control genes. Curr Opin Cell Biol 2:1065–1075CrossRefPubMedGoogle Scholar
  27. 27.
    Olson E (1990) MyoD family: a paradigm for development? Genes Dev 4:1454–1461CrossRefPubMedGoogle Scholar
  28. 28.
    Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R, Blackwell TK, Turner D, Rupp R, Hollenberg S (1991) The MyoD gene family: nodal point during specification of the muscle cell lineage. Science 251:761–766CrossRefPubMedGoogle Scholar
  29. 29.
    Biesiada E, Hamamori Y, Kedes L, Sartorelli V (1999) Myogenic basic helix-loop-helix proteins and Sp1 interact as components of a multiprotein transcriptional complex required for activity of the human cardiac α-actin promoter. Mol Cell Biol 19:2577–2584CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sartorelli V, Webster KA, Kedes L (1990) Muscle-specific expression of the cardiac α-actin gene requires MyoD1, CArG-box binding factor, and Spl. Genes Dev 4:1811–1822CrossRefPubMedGoogle Scholar
  31. 31.
    Kitzmann M, Fernandez A (2001) Crosstalk between cell cycle regulators and the myogenic factor MyoD in skeletal myoblasts. Cell Mol Life Sci 58:571–579CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina

Personalised recommendations