Molecular and Cellular Biochemistry

, Volume 412, Issue 1–2, pp 147–154 | Cite as

Sex difference in the sensitivity of cardiac mitochondrial permeability transition pore to calcium load

  • Marie Milerová
  • Zdeněk Drahota
  • Anna Chytilová
  • Kateřina Tauchmannová
  • Josef Houštěk
  • Bohuslav Ošťádal


Most of the experimental studies have revealed that female heart is more tolerant to ischemia/reperfusion (I/R) injury as compared with the male myocardium. It is widely accepted that mitochondrial dysfunction, and particularly mitochondrial permeability transition pore (MPTP) opening, plays a major role in determining the extent of cardiac I/R injury. The aim of the present study was, therefore, to analyze (i) whether calcium-induced swelling of cardiac mitochondria is sex-dependent and related to the degree of cardiac tolerance to I/R injury and (ii) whether changes in MPTP components—cyclophilin D (CypD) and ATP synthase—can be involved in this process. We have observed that in mitochondria isolated from rat male and female hearts the MPTP has different sensitivity to the calcium load. Female mitochondria are more resistant both in the extent and in the rate of the mitochondrial swelling at higher calcium concentration (200 µM). At low calcium concentration (50 µM) no differences were observed. Our data further suggest that sex-dependent specificity of the MPTP is not the result of different amounts of ATP synthase and CypD, or their respective ratio in mitochondria isolated from male and female hearts. Our results indicate that male and female rat hearts contain comparable content of MPTP and its regulatory protein CypD; parallel immunodetection revealed also the same contents of adenine nucleotide translocator or voltage-dependent anion channel. Increased resistance of female heart mitochondria thus cannot be explained by changes in putative components of MPTP, and rather reflects regulation of MPTP function.


Heart Mitochondrial permeability transition pore Sex difference Calcium-induced swelling 



This study was supported by research Grants from Grant Agency of the Czech Republic (14-36804G, 13-10267S, 303/12/1162) and Grant Agency of Ministry of Health of the Czech Republic (NT14050).


  1. 1.
    Duvall WL (2003) Cardiovascular disease in women. Mt Sinai J Med 70(5):293–305PubMedGoogle Scholar
  2. 2.
    Bassuk SS, Manson JE (2010) Physical activity and cardiovascular disease prevention in women: a review of the epidemiologic evidence. Nutr Metab Cardiovasc Dis 20(6):467–473PubMedCrossRefGoogle Scholar
  3. 3.
    Ostadal B, Ostadalova I, Kolar F, Charvatova Z, Netuka I (2009) Ontogenetic development of cardiac tolerance to oxygen deprivation—possible mechanisms. Physiol Res 58(Suppl 2):S1–S12PubMedGoogle Scholar
  4. 4.
    Ostadal P, Ostadal B (2012) Women and the management of acute coronary syndrome. Can J Physiol Pharmacol 90(9):1151–1159PubMedCrossRefGoogle Scholar
  5. 5.
    Ostadal B, Ostadal P (2014) Sex-based differences in cardiac ischaemic injury and protection: therapeutic implications. Br J Pharmacol 171(3):541–554PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Ostadal B, Prochazka J, Pelouch V, Urbanova D, Widimsky J (1984) Comparison of cardiopulmonary responses of male and female rats to intermittent high altitude hypoxia. Physiol Bohemoslov 33(2):129–138PubMedGoogle Scholar
  7. 7.
    Johnson MS, Moore RL, Brown DA (2006) Sex differences in myocardial infarct size are abolished by sarcolemmal KATP channel blockade in rat. Am J Physiol Heart Circ Physiol 290(6):H2644–H2647PubMedCrossRefGoogle Scholar
  8. 8.
    Murphy E, Steenbergen C (2007) Gender-based differences in mechanisms of protection in myocardial ischemia-reperfusion injury. Cardiovasc Res 75(3):478–486PubMedCrossRefGoogle Scholar
  9. 9.
    Murphy E, Steenbergen C (2007) Cardioprotection in females: a role for nitric oxide and altered gene expression. Heart Fail Rev 12(3–4):293–300PubMedCrossRefGoogle Scholar
  10. 10.
    Ross JL, Howlett SE (2012) Age and ovariectomy abolish beneficial effects of female sex on rat ventricular myocytes exposed to simulated ischemia and reperfusion. PLoS One 7(6):e38425PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Chu SH, Sutherland K, Beck J, Kowalski J, Goldspink P, Schwertz D (2005) Sex differences in expression of calcium-handling proteins and beta-adrenergic receptors in rat heart ventricle. Life Sci 76(23):2735–2749PubMedCrossRefGoogle Scholar
  12. 12.
    Arieli Y, Gursahani H, Eaton MM, Hernandez LA, Schaefer S (2004) Gender modulation of Ca(2+) uptake in cardiac mitochondria. J Mol Cell Cardiol 37(2):507–513PubMedCrossRefGoogle Scholar
  13. 13.
    Colom B, Oliver J, Roca P, Garcia-Palmer FJ (2007) Caloric restriction and gender modulate cardiac muscle mitochondrial H2O2 production and oxidative damage. Cardiovasc Res 74(3):456–465PubMedCrossRefGoogle Scholar
  14. 14.
    Vijay V, Han T, Moland CL, Kwekel JC, Fuscoe JC, Desai VG (2015) Sexual dimorphism in the expression of mitochondria-related genes in rat heart at different ages. PLoS One 10(1):e0117047PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Halestrap AP (2010) A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans 38(4):841–860PubMedCrossRefGoogle Scholar
  16. 16.
    Bernardi P (2013) The mitochondrial permeability transition pore: a mystery solved? Front Physiol 4:95PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Halestrap AP, Richardson AP (2015) The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. J Mol Cell Cardiol 78:129–141PubMedCrossRefGoogle Scholar
  18. 18.
    Gutierrez-Aguilar M, Baines CP (2015) Structural mechanisms of cyclophilin D-dependent control of the mitochondrial permeability transition pore. Biochim Biophys Acta 1850(10):2041–2047PubMedCrossRefGoogle Scholar
  19. 19.
    Griffiths EJ, Halestrap AP (1993) Protection by cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol 25(12):1461–1469PubMedCrossRefGoogle Scholar
  20. 20.
    Clarke SJ, McStay GP, Halestrap AP (2002) Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A. J Biol Chem 277(38):34793–34799PubMedCrossRefGoogle Scholar
  21. 21.
    Rasola A, Bernardi P (2015) Reprint of “The mitochondrial permeability transition pore and its adaptive responses in tumor cells”. Cell Calcium 58(1):18–26PubMedCrossRefGoogle Scholar
  22. 22.
    Giorgio V, Bisetto E, Soriano ME, Dabbeni-Sala F, Basso E, Petronilli V, Forte MA, Bernardi P, Lippe G (2009) Cyclophilin D modulates mitochondrial F0F1-ATP synthase by interacting with the lateral stalk of the complex. J Biol Chem 284(49):33982–33988PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M, Glick GD, Petronilli V, Zoratti M, Szabo I, Lippe G, Bernardi P (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci USA 110(15):5887–5892PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Carraro M, Giorgio V, Sileikyte J, Sartori G, Forte M, Lippe G, Zoratti M, Szabo I, Bernardi P (2014) Channel formation by yeast F-ATP synthase and the role of dimerization in the mitochondrial permeability transition. J Biol Chem 289(23):15980–15985PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Bonora M, Bononi A, De Marchi E, Giorgi C, Lebiedzinska M, Marchi S, Patergnani S, Rimessi A, Suski JM, Wojtala A, Wieckowski MR, Kroemer G, Galluzzi L, Pinton P (2013) Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle 12(4):674–683PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Alavian KN, Beutner G, Lazrove E, Sacchetti S, Park HA, Licznerski P, Li H, Nabili P, Hockensmith K, Graham M, Porter GA Jr, Jonas EA (2014) An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proc Natl Acad Sci U S A 111(29):10580–10585PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Milerova M, Charvatova Z, Skarka L, Ostadalova I, Drahota Z, Fialova M, Ostadal B (2010) Neonatal cardiac mitochondria and ischemia/reperfusion injury. Mol Cell Biochem 335(1–2):147–153PubMedCrossRefGoogle Scholar
  28. 28.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  29. 29.
    Pecinova A, Drahota Z, Nuskova H, Pecina P, Houstek J (2011) Evaluation of basic mitochondrial functions using rat tissue homogenates. Mitochondrion 11(5):722–728PubMedCrossRefGoogle Scholar
  30. 30.
    Drahota Z, Endlicher R, Stankova P, Rychtrmoc D, Milerova M, Cervinkova Z (2012) Characterization of calcium, phosphate and peroxide interactions in activation of mitochondrial swelling using derivative of the swelling curves. J Bioenerg Biomembr 44(3):309–315PubMedCrossRefGoogle Scholar
  31. 31.
    Castilho RF, Kowaltowski AJ, Vercesi AE (1998) 3,5,3′-triiodothyronine induces mitochondrial permeability transition mediated by reactive oxygen species and membrane protein thiol oxidation. Arch Biochem Biophys 354(1):151–157PubMedCrossRefGoogle Scholar
  32. 32.
    Schagger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166(2):368–379PubMedCrossRefGoogle Scholar
  33. 33.
    Kolarov J, Kuzela S, Krempasky V, Lakota J, Ujhazy V (1978) ADP, ATP translocator protein of rat heart, liver and hepatoma mitochondria exhibits immunological cross-reactivity. FEBS Lett 96(2):373–376PubMedCrossRefGoogle Scholar
  34. 34.
    Gostimskaya IS, Grivennikova VG, Zharova TV, Bakeeva LE, Vinogradov AD (2003) In situ assay of the intramitochondrial enzymes: use of alamethicin for permeabilization of mitochondria. Anal Biochem 313(1):46–52PubMedCrossRefGoogle Scholar
  35. 35.
    Drahota Z, Milerova M, Endlicher R, Rychtrmoc D, Cervinkova Z, Ost’adal B (2012) Developmental changes of the sensitivity of cardiac and liver mitochondrial permeability transition pore to calcium load and oxidative stress. Physiol Res 61(Suppl 1):S165–S172PubMedGoogle Scholar
  36. 36.
    Cassarino DS, Parks JK, Parker WD Jr, Bennett JP Jr (1999) The parkinsonian neurotoxin MPP + opens the mitochondrial permeability transition pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism. Biochim Biophys Acta 1453(1):49–62PubMedCrossRefGoogle Scholar
  37. 37.
    Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP, MacGregor GR, Wallace DC (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427(6973):461–465PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9(5):550–555PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Bonora M, Wieckowski MR, Chinopoulos C, Kepp O, Kroemer G, Galluzzi L, Pinton P (2015) Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition. Oncogene 34(12):1475–1486PubMedCrossRefGoogle Scholar
  40. 40.
    Hausenloy DJ, Yellon DM (2009) Preconditioning and postconditioning: underlying mechanisms and clinical application. Atherosclerosis 204(2):334–341PubMedCrossRefGoogle Scholar
  41. 41.
    Halestrap AP, Connern CP, Griffiths EJ, Kerr PM (1997) Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury. Mol Cell Biochem 174(1–2):167–172PubMedCrossRefGoogle Scholar
  42. 42.
    Bernardi P, Di Lisa F (2015) The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol 78:100–106PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Alam MR, Baetz D, Ovize M (2015) Cyclophilin D and myocardial ischemia-reperfusion injury: a fresh perspective. J Mol Cell Cardiol 78:80–89PubMedCrossRefGoogle Scholar
  44. 44.
    Rasola A, Sciacovelli M, Chiara F, Pantic B, Brusilow WS, Bernardi P (2010) Activation of mitochondrial ERK protects cancer cells from death through inhibition of the permeability transition. Proc Natl Acad Sci USA 107(2):726–731PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Linard D, Kandlbinder A, Degand H, Morsomme P, Dietz KJ, Knoops B (2009) Redox characterization of human cyclophilin D: identification of a new mammalian mitochondrial redox sensor? Arch Biochem Biophys 491(1–2):39–45PubMedCrossRefGoogle Scholar
  46. 46.
    Nguyen TT, Stevens MV, Kohr M, Steenbergen C, Sack MN, Murphy E (2011) Cysteine 203 of cyclophilin D is critical for cyclophilin D activation of the mitochondrial permeability transition pore. J Biol Chem 286(46):40184–40192PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Hafner AV, Dai J, Gomes AP, Xiao CY, Palmeira CM, Rosenzweig A, Sinclair DA (2010) Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging (Albany NY) 2(12):914–923Google Scholar
  48. 48.
    Shulga N, Wilson-Smith R, Pastorino JG (2010) Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria. J Cell Sci 123(Pt 6):894–902PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Sack MN (2011) Emerging characterization of the role of SIRT3-mediated mitochondrial protein deacetylation in the heart. Am J Physiol Heart Circ Physiol 301(6):H2191–H2197PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Williams GS, Boyman L, Lederer WJ (2015) Mitochondrial calcium and the regulation of metabolism in the heart. J Mol Cell Cardiol 78:35–45PubMedCrossRefGoogle Scholar
  51. 51.
    Piot C, Croisille P, Staat P, Thibault H, Rioufol G, Mewton N, Elbelghiti R, Cung TT, Bonnefoy E, Angoulvant D, Macia C, Raczka F, Sportouch C, Gahide G, Finet G, Andre-Fouet X, Revel D, Kirkorian G, Monassier JP, Derumeaux G, Ovize M (2008) Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med 359(5):473–481PubMedCrossRefGoogle Scholar
  52. 52.
    Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434(7033):658–662PubMedCrossRefGoogle Scholar
  53. 53.
    De Loof A (2015) The essence of female-male physiological dimorphism: “Differential Ca2+—homeostasis enabled by the interplay between farnesol-like endogenous sesquiterpenoids and sex-steroiids? The Calcigender paradigm”. Gen Comp Endocrinol 12:131–146CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Marie Milerová
    • 1
  • Zdeněk Drahota
    • 1
  • Anna Chytilová
    • 1
  • Kateřina Tauchmannová
    • 1
  • Josef Houštěk
    • 1
  • Bohuslav Ošťádal
    • 1
  1. 1.Institute of PhysiologyCzech Academy of SciencesPragueCzech Republic

Personalised recommendations