Molecular and Cellular Biochemistry

, Volume 412, Issue 1–2, pp 141–146 | Cite as

ANRIL regulates the proliferation of human colorectal cancer cells in both two- and three-dimensional culture

  • Madoka Naemura
  • Toshiyuki Tsunoda
  • Yasutoshi Inoue
  • Haruna Okamoto
  • Senji Shirasawa
  • Yojiro KotakeEmail author


ANRIL is a long noncoding RNA transcribed from the INK4 locus that encodes three tumor suppressor genes, p15, p16, and ARF. Previous studies demonstrated that ANRIL represses p15 and p16, which positively regulate the pRB pathway, leading to repression of cellular senescence of human normal fibroblasts. However, the role of ANRIL in cancer cell proliferation is less well understood. Here we report that ANRIL is involved in the proliferation of colorectal cancer HCT116 cells in two- and three-dimensional culture. Silencing ANRIL by both transfection with small interfering RNA and retrovirally produced small hairpin RNA reduced HCT116 cell proliferation in both two- and three-dimensional culture. HCT116 cells depleted for ANRIL were arrested in the S phase of cell cycle. Notably, silencing ANRIL did not result in the activation of expression of the INK4 locus. These results suggest that ANRIL positively regulates the proliferation of HCT116 cells in two- and three-dimensional culture in a p15/p16-pRB pathway-independent manner.


Long noncoding RNA ANRIL p15 p16 Colorectal cancer Cell cycle 



We thank our laboratory members for their technical assistance and helpful discussions. This work was supported by JSPS KAKENHI Grant Number 26430127 (to YK) and Takeda Science Foundation (to YK).

Compliance with ethical standard

Conflict of interest

The authors have no conflict of interest directly relevant to the content of this article.


  1. 1.
    Necsulea A, Soumillon M, Warnefors M, Liechti A, Daish T, Zeller U, Baker JC, Grutzner F, Kaessmann H (2014) The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 505:635–640. doi: 10.1038/nature12943 CrossRefPubMedGoogle Scholar
  2. 2.
    Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159. doi: 10.1038/nrg2521 CrossRefPubMedGoogle Scholar
  3. 3.
    Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23:1494–1504. doi: 10.1101/gad.1800909 PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Kitagawa M, Kitagawa K, Kotake Y, Niida H, Ohhata T (2013) Cell cycle regulation by long non-coding RNAs. Cell Mol Life Sci 70:4785–4794. doi: 10.1007/s00018-013-1423-0 PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Kitagawa M, Kotake Y, Ohhata T (2012) Long non-coding RNAs involved in cancer development and cell fate determination. Curr Drug Targets 13:1616–1621CrossRefPubMedGoogle Scholar
  6. 6.
    Yap KL, Li S, Munoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, Gil J, Walsh MJ, Zhou MM (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 38:662–674. doi: 10.1016/j.molcel.2010.03.021 PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M, Xiong Y (2011) Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 30:1956–1962. doi: 10.1038/onc.2010.568 PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Kotake Y, Naemura M, Murasaki C, Inoue Y, Okamoto H (2015) Transcriptional regulation of the p16 tumor suppressor gene. Anticancer Res 35:4397–4401PubMedGoogle Scholar
  9. 9.
    Lowe SW, Sherr CJ (2003) Tumor suppression by Ink4a-Arf: progress and puzzles. Curr Opin Genet Dev 13:77–83CrossRefPubMedGoogle Scholar
  10. 10.
    Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512CrossRefPubMedGoogle Scholar
  11. 11.
    Serrano M, Hannon GJ, Beach D (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366:704–707. doi: 10.1038/366704a0 CrossRefPubMedGoogle Scholar
  12. 12.
    Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee HW, Cordon-Cardo C, DePinho RA (1998) The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2′s inhibition of p53. Cell 92:713–723CrossRefPubMedGoogle Scholar
  13. 13.
    Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, Palmero I, Ryan K, Hara E, Vousden KH, Peters G (1998) The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J 17:5001–5014. doi: 10.1093/emboj/17.17.5001 PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Zhang Y, Xiong Y, Yarbrough WG (1998) ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92:725–734CrossRefPubMedGoogle Scholar
  15. 15.
    Serrano M, Lee H, Chin L, Cordon-Cardo C, Beach D, DePinho RA (1996) Role of the INK4a locus in tumor suppression and cell mortality. Cell 85:27–37CrossRefPubMedGoogle Scholar
  16. 16.
    Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA, Grosveld G, Sherr CJ (1997) Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91:649–659CrossRefPubMedGoogle Scholar
  17. 17.
    Krimpenfort P, Ijpenberg A, Song JY, van der Valk M, Nawijn M, Zevenhoven J, Berns A (2007) p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a. Nature 448:943–946. doi: 10.1038/nature06084 CrossRefPubMedGoogle Scholar
  18. 18.
    Krimpenfort P, Quon KC, Mooi WJ, Loonstra A, Berns A (2001) Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature 413:83–86. doi: 10.1038/35092584 CrossRefPubMedGoogle Scholar
  19. 19.
    Sharpless NE, Bardeesy N, Lee KH, Carrasco D, Castrillon DH, Aguirre AJ, Wu EA, Horner JW, DePinho RA (2001) Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413:86–91. doi: 10.1038/35092592 CrossRefPubMedGoogle Scholar
  20. 20.
    Ruas M, Peters G (1998) The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta 1378:F115–F177PubMedGoogle Scholar
  21. 21.
    Sharpless NE (2005) INK4a/ARF: a multifunctional tumor suppressor locus. Mutat Res 576:22–38. doi: 10.1016/j.mrfmmm.2004.08.021 CrossRefPubMedGoogle Scholar
  22. 22.
    Congrains A, Kamide K, Katsuya T, Yasuda O, Oguro R, Yamamoto K, Ohishi M, Rakugi H (2012) CVD-associated non-coding RNA, ANRIL, modulates expression of atherogenic pathways in VSMC. Biochem Biophys Res Commun 419:612–616. doi: 10.1016/j.bbrc.2012.02.050 CrossRefPubMedGoogle Scholar
  23. 23.
    Sato K, Nakagawa H, Tajima A, Yoshida K, Inoue I (2010) ANRIL is implicated in the regulation of nucleus and potential transcriptional target of E2F1. Oncol Rep 24:701–707PubMedGoogle Scholar
  24. 24.
    Holdt LM, Hoffmann S, Sass K, Langenberger D, Scholz M, Krohn K, Finstermeier K, Stahringer A, Wilfert W, Beutner F, Gielen S, Schuler G, Gabel G, Bergert H, Bechmann I, Stadler PF, Thiery J, Teupser D (2013) Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet 9:e1003588. doi: 10.1371/journal.pgen.1003588 PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Naemura M, Murasaki C, Inoue Y, Okamoto H, Kotake Y (2015) Long noncoding RNA ANRIL regulates proliferation of non-small cell lung cancer and cervical cancer cells. Anticancer Res 35:5377–5382PubMedGoogle Scholar
  26. 26.
    Zhang EB, Kong R, Yin DD, You LH, Sun M, Han L, Xu TP, Xia R, Yang JS, De W, Chen J (2014) Long noncoding RNA ANRIL indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of miR-99a/miR-449a. Oncotarget 5:2276–2292PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Tsunoda T, Ishikura S, Doi K, Iwaihara Y, Hidesima H, Luo H, Hirose Y, Shirasawa S (2015) Establishment of a three-dimensional floating cell culture system for screening drugs targeting KRAS-mediated signaling molecules. Anticancer Res 35:4453–4459PubMedGoogle Scholar
  28. 28.
    Tsunoda T, Ota T, Fujimoto T, Doi K, Tanaka Y, Yoshida Y, Ogawa M, Matsuzaki H, Hamabashiri M, Tyson DR, Kuroki M, Miyamoto S, Shirasawa S (2012) Inhibition of phosphodiesterase-4 (PDE4) activity triggers luminal apoptosis and AKT dephosphorylation in a 3-D colonic-crypt model. Mol Cancer 11:46. doi: 10.1186/1476-4598-11-46 PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Kotake Y, Cao R, Viatour P, Sage J, Zhang Y, Xiong Y (2007) pRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4alpha tumor suppressor gene. Genes Dev 21:49–54. doi: 10.1101/gad.1499407 PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    McDonald SA, Preston SL, Lovell MJ, Wright NA, Jankowski JA (2006) Mechanisms of disease: from stem cells to colorectal cancer. Nat Clin Pract Gastroenterol Hepatol 3:267–274. doi: 10.1038/ncpgasthep0473 CrossRefPubMedGoogle Scholar
  31. 31.
    Shirasawa S, Furuse M, Yokoyama N, Sasazuki T (1993) Altered growth of human colon cancer cell lines disrupted at activated Ki-ras. Science 260:85–88CrossRefPubMedGoogle Scholar
  32. 32.
    Tsunoda T, Takashima Y, Fujimoto T, Koyanagi M, Yoshida Y, Doi K, Tanaka Y, Kuroki M, Sasazuki T, Shirasawa S (2010) Three-dimensionally specific inhibition of DNA repair-related genes by activated KRAS in colon crypt model. Neoplasia 12:397–404PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Nie FQ, Sun M, Yang JS, Xie M, Xu TP, Xia R, Liu YW, Liu XH, Zhang EB, Lu KH, Shu YQ (2015) Long noncoding RNA ANRIL promotes non-small cell lung cancer cell proliferation and inhibits apoptosis by silencing KLF2 and P21 expression. Mol Cancer Ther 14:268–277. doi: 10.1158/1535-7163.MCT-14-0492 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Madoka Naemura
    • 1
  • Toshiyuki Tsunoda
    • 3
  • Yasutoshi Inoue
    • 1
  • Haruna Okamoto
    • 1
  • Senji Shirasawa
    • 3
  • Yojiro Kotake
    • 1
    • 2
    Email author
  1. 1.Graduate School of Humanity-Oriented Science and EngineeringKinki UniversityIizukaJapan
  2. 2.Department of Biological and Environmental Chemistry, Faculty of Humanity-Oriented Science and EngineeringKinki UniversityIizukaJapan
  3. 3.Department of Cell Biology, Faculty of MedicineFukuoka UniversityJonan-kuJapan

Personalised recommendations