Molecular and Cellular Biochemistry

, Volume 411, Issue 1–2, pp 35–42 | Cite as

Human dehydrogenase/reductase (SDR family) member 8 (DHRS8): a description and evaluation of its biochemical properties

  • Tereza Lundová
  • Hana Štambergová
  • Lucie Zemanová
  • Markéta Svobodová
  • Jana Havránková
  • Miroslav Šafr
  • Vladimír Wsól


Dehydrogenase/reductase (SDR family) member 8 (DHRS8, SDR16C2) belongs to the short-chain dehydrogenase/reductase (SDR) superfamily, one of the largest enzyme groups. In addition to the well-known members which participate in the metabolism of important eobiotics and xenobiotics, this superfamily contains many poorly characterized proteins. DHRS8 is a member of the Multisubstrate NADP(H)-dependent SDR16C family, which generally contains insufficiently described enzymes. Despite the limited knowledge about DHRS8, preliminary indicators have emerged regarding its significant function in the modulation of steroidal activity, at least in the case of 3α-adiol, lipid metabolism and detoxification. The aim of this study was to describe additional biochemical properties of DHRS8 and to unify knowledge about this enzyme. The DHRS8 was prepared in recombinant form and its membrane topology in the endoplasmic reticulum as an integral protein with cytosolic orientation was demonstrated. The enzyme participates in the NAD+-dependent oxidation of steroid hormones as β-estradiol and testosterone in vitro; apparent K m and V max values were 39.86 µM and 0.80 nmol × mg−1 × min−1 for β-estradiol and 1207.29 µM and 3.45 nmol × mg−1 × min−1 for testosterone. Moreover, synthetic steroids (methyltestosterone and nandrolone) used as anabolics as well as all-trans-retinol were for the first time identified as substrates of DHRS8. This knowledge of its in vitro activity together with a newly described expression pattern at the protein level in tissues involved in steroidogenesis (adrenal gland and testis) and detoxification (liver, lung, kidney and small intestine) could suggest a potential role of DHRS8 in vivo.


DHRS8 SDR16C2 17β-HSD11 Expression Membrane topology Enzyme activity 



Short-chain dehydrogenases/reductases


Dehydrogenase/reductase (SDR family) member 8


17β-Hydroxysteroid dehydrogenase type 11


Retinal short-chain dehydrogenase/reductase 2


Sf9 microsomes containing overexpressed DHRS8






Endoplasmic reticulum





This project was supported by the Grant Agency of Charles University (Grant No. 677012/C/2012), the European Social Fund and the state budget of the Czech Republic (TEAB, project no. CZ.1.07/2.3.00/20.0235) and the Charles University project SVV 260 186. We would like to thank Prof. Udo Oppermann (SGC, University of Oxford, UK) for providing DHRS8 cDNA. We thank Daniel Sampey, MFA for his help with the English language editing.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Li KXZ, Smith RE, Krozowski ZS (1998) Cloning and expression of a novel tissue specific 17β-hydroxysteroid dehydrogenase. Endocr Res 24:663–667CrossRefPubMedGoogle Scholar
  2. 2.
    Chai Z, Brereton P, Suzuki T et al (2003) 17β-Hydroxysteroid dehydrogenase type XI localizes to human steroidogenic cells. Endocrinology 144:2084–2091. doi: 10.1210/en.2002-221030 CrossRefPubMedGoogle Scholar
  3. 3.
    Bray JE, Marsden BD, Oppermann U (2009) The human short-chain dehydrogenase/reductase (SDR) superfamily: a bioinformatics summary. Chem Biol Interact 178:99–109. doi: 10.1016/j.cbi.2008.10.058 CrossRefPubMedGoogle Scholar
  4. 4.
    Persson B, Kallberg Y (2013) Classification and nomenclature of the superfamily of short-chain dehydrogenases/reductases (SDRs). Chem Biol Interact 202(1):111–115CrossRefPubMedGoogle Scholar
  5. 5.
    Lee S-A, Belyaeva OV, Kedishvili NY (2009) Biochemical characterization of human epidermal retinol dehydrogenase 2. Chem Biol Interact 178:182–187. doi: 10.1016/j.cbi.2008.09.019 PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Wu BX, Moiseyev G, Chen Y et al (2004) Identification of RDH10, an all-trans retinol dehydrogenase, in retinal Müller cells. Investig Ophthalmol Vis Sci 45:3857–3862. doi: 10.1167/iovs.03-1302 CrossRefGoogle Scholar
  7. 7.
    Haeseleer F, Huang J, Lebioda L et al (1998) Molecular characterization of a novel short-chain dehydrogenase/reductase that reduces all-trans-retinal. J Biol Chem 273:21790–21799CrossRefPubMedGoogle Scholar
  8. 8.
    Belyaeva OV, Lee SA, Adams MK et al (2012) Short chain dehydrogenase/reductase Rdhe2 is a novel retinol dehydrogenase essential for frog embryonic development. J Biol Chem 287:9061–9071. doi: 10.1074/jbc.M111.336727 PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Belyaeva OV, Johnson MP, Kedishvili NY (2008) Kinetic analysis of human enzyme RDH10 defines the characteristics of a physiologically relevant retinol dehydrogenase. J Biol Chem 283:20299–20308. doi: 10.1074/jbc.M800019200 PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Horiguchi Y, Araki M, Motojima K (2008) Identification and characterization of the ER/lipid droplet-targeting sequence in 17β-hydroxysteroid dehydrogenase type 11. Arch Biochem Biophys 479:121–130. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  11. 11.
    Lukacik P, Kavanagh KL, Oppermann U (2006) Structure and function of human 17β-hydroxysteroid dehydrogenases. Mol Cell Endocrinol 248:61–71. doi: 10.1016/j.mce.2005.12.007 CrossRefPubMedGoogle Scholar
  12. 12.
    Brereton P, Suzuki T, Sasano H et al (2001) Pan1b (17βHSD11)-enzymatic activity and distribution in the lung. Mol Cell Endocrinol 171:111–117. doi: 10.1016/S0303-7207(00)00417-2 CrossRefPubMedGoogle Scholar
  13. 13.
    Yokoi Y, Horiguchi Y, Araki M, Motojima K (2007) Regulated expression by PPARalpha and unique localization of 17beta-hydroxysteroid dehydrogenase type 11 protein in mouse intestine and liver. FEBS J 274:4837–4847. doi: 10.1111/j.1742-4658.2007.06005.x CrossRefPubMedGoogle Scholar
  14. 14.
    Steckelbroeck S, Watzka M, Reissinger A et al (2003) Characterisation of estrogenic 17β-hydroxysteroid dehydrogenase (17β-HSD) activity in the human brain. J Steroid Biochem Mol Biol 86:79–92. doi: 10.1016/S0960-0760(03)00251-6 CrossRefPubMedGoogle Scholar
  15. 15.
    Keller B, Grote K, Adamski J (2006) In silico Northern blot, an automated method to determine expression patterns from EST databases, reveals tissue specificity of murine 17beta-hydroxysteroid dehydrogenase type 11. Mol Cell Endocrinol 248:242–245. doi: 10.1016/j.mce.2005.11.033 CrossRefPubMedGoogle Scholar
  16. 16.
    Rotinen M, Villar J, Celay J et al (2011) Transcriptional regulation of type 11 17β-hydroxysteroid dehydrogenase expression in prostate cancer cells. Mol Cell Endocrinol 339:45–53. doi: 10.1016/j.mce.2011.03.015 PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Rotinen M, Villar J, Celay J, Encío I (2010) Type 10 17β-hydroxysteroid dehydrogenase expression is regulated by C/EBPβ in HepG2 cells. J Steroid Biochem Mol Biol 122:164–171. doi: 10.1016/j.jsbmb.2010.07.003 CrossRefPubMedGoogle Scholar
  18. 18.
    Štambergová H, Škarydová L, Dunford JE, Wsól V (2014) Biochemical properties of human dehydrogenase/reductase (SDR family) member 7. Chem Biol Interact 207:52–57. doi: 10.1016/j.cbi.2013.11.003 CrossRefPubMedGoogle Scholar
  19. 19.
    Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379. doi: 10.1093/bioinformatics/14.4.378 CrossRefPubMedGoogle Scholar
  20. 20.
    Tusnády GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17:849–850CrossRefPubMedGoogle Scholar
  21. 21.
    Hofmann K, Stoffel W (1993) TMbase—a database of membrane spanning protein segments. Biol Chem Hoppe- Seyler 374:166Google Scholar
  22. 22.
    Bernsel A, Viklund H, Hennerdal A, Elofsson A (2009) TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res 37:W465–W468. doi: 10.1093/nar/gkp363 PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Buchan DWA, Minneci F, Nugent TCO et al (2013) Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res 41:W349–W357. doi: 10.1093/nar/gkt381 PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Tsaousis GN, Bagos PG, Hamodrakas SJ (2014) HMMpTM: improving transmembrane protein topology prediction using phosphorylation and glycosylation site prediction. Biochim Biophys Acta Proteins Proteomics 1844:316–322. doi: 10.1016/j.bbapap.2013.11.001 CrossRefGoogle Scholar
  25. 25.
    Lapshina EA, Belyaeva OV, Chumakova OV, Kedishvili NY (2003) Differential recognition of the free versus bound retinol by human microsomal retinol/sterol dehydrogenases: characterization of the holo-CRBP dehydrogenase activity of RoDH-4. Biochemistry 42:776–784. doi: 10.1021/bi026836r CrossRefPubMedGoogle Scholar
  26. 26.
    Lundová T, Zemanová L, Malčeková B et al (2015) Molecular and biochemical characterisation of human short-chain dehydrogenase/reductase member 3 (DHRS3). Chem Biol Interact 234:178–187. doi: 10.1016/j.cbi.2014.10.018 CrossRefPubMedGoogle Scholar
  27. 27.
    Belyaeva OV, Stetsenko AV, Nelson P, Kedishvili NY (2003) Properties of short-chain dehydrogenase/reductase RalR1: characterization of purified enzyme, its orientation in the microsomal membrane, and distribution in human tissues and cell lines. Biochemistry 42:14838–14845. doi: 10.1021/bi035288u CrossRefPubMedGoogle Scholar
  28. 28.
    Gallego O, Belyaeva OV, Porté S et al (2006) Comparative functional analysis of human medium-chain dehydrogenases, short-chain dehydrogenases/reductases and aldo-keto reductases with retinoids. Biochem J 399:101–109. doi: 10.1042/BJ20051988 PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Wang J, Bongianni JK, Napoli JL (2001) The N-terminus of retinol dehydrogenase type 1 signals cytosolic orientation in the microsomal membrane. Biochemistry 40:12533–12540. doi: 10.1021/bi011396+ CrossRefPubMedGoogle Scholar
  30. 30.
    Gry M, Rimini R, Strömberg S et al (2009) Correlations between RNA and protein expression profiles in 23 human cell lines. BMC Genom. doi: 10.1186/1471-2164-10-365 Google Scholar
  31. 31.
    Takahashi Y, Moiseyev G, Farjo K, Ma J-X (2009) Characterization of key residues and membrane association domains in retinol dehydrogenase 10. Biochem J 419:113–122. doi: 10.1042/BJ20080812 PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Labrie F, Luu-The V, Lin S et al (1997) The key role of 17β-hydroxysteroid dehydrogenases in sex steroid biology. Steroids 62:148–158CrossRefPubMedGoogle Scholar
  33. 33.
    Haeseleer F, Palczewski K (2000) Short-chain dehydrogenase/reductase in retina. Methods Enzymol 316:372–383CrossRefPubMedGoogle Scholar
  34. 34.
    Chetyrkin SV, Hu J, Gough WH et al (2001) Further characterization of human microsomal 3alpha-hydroxysteroid dehydrogenase. Arch Biochem Biophys 386:1–10. doi: 10.1006/abbi.2000.2203 CrossRefPubMedGoogle Scholar
  35. 35.
    Motojima K, Hirai T (2006) Peroxisome proliferator-activated receptor alpha plays a vital role in inducing a detoxification system against plant compounds with crosstalk with other xenobiotic nuclear receptors. FEBS J 273:292–300. doi: 10.1111/j.1742-4658.2005.05060.x CrossRefPubMedGoogle Scholar
  36. 36.
    Motojima K (2004) 17β-hydroxysteroid dehydrogenase type 11 is a major peroxisome proliferator-activated receptor alpha-regulated gene in mouse intestine. Eur J Biochem 271:4141–4146. doi: 10.1111/j.1432-1033.2004.04352.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Tereza Lundová
    • 1
  • Hana Štambergová
    • 1
  • Lucie Zemanová
    • 1
  • Markéta Svobodová
    • 1
  • Jana Havránková
    • 1
  • Miroslav Šafr
    • 2
  • Vladimír Wsól
    • 1
  1. 1.Department of Biochemical Sciences, Faculty of Pharmacy in Hradec KrálovéCharles University in PragueHradec KrálovéCzech Republic
  2. 2.Institute of Legal Medicine, Faculty of MedicineCharles University and University Hospital in Hradec KrálovéHradec KrálovéCzech Republic

Personalised recommendations