Molecular and Cellular Biochemistry

, Volume 410, Issue 1–2, pp 165–174 | Cite as

Telopodes of telocytes are influenced in vitro by redox conditions and ageing

  • Ana-Maria Enciu
  • Laurentiu M. Popescu


Telocytes (TCs) are a novel cell type identified among interstitial cells in various organs. TCs are characterized by very long cell processes (tens to hundreds micrometres) named telopodes (Tps) with uneven calibre: dilations (podoms) and very thin segments (podomers). However, little is known about the factors which influence Tps conformation. Recently, extracellular matrix proteins were found to influence Tps extension, adherence and spreading. Here, we show that oxidative stress and ageing influence formation of new Tps of TCs cultivated from human non-pregnant myometrium. Using real-time videomicroscopy, we found that ageing the TCs to passage 21 increased the ratio of Tps/TC number with about 50 %, whereas oxidative stress hindered formation of new Tps in both aged and young TCs (passage 7). Under oxidative stress, newly formed cell processes were up to 25 % shorter. Migration pathway length was decreased by 30–40 % for both young and aged cells in an oxidative stress environment. Contrary, addition of N-acetyl cysteine in cell culture medium shifted TCs morphology to a long and slender profile. In conclusion, we showed that TCs specific morphology in vitro is influenced by oxidative status balance, as well as ageing.


Telocytes Telopodes Ageing Oxidative stress Cell prolongations N-acetyl cysteine Cell migration 



This work was partially supported by Grants of the Romanian National Authority for Scientific Research, CNCS—UEFISCDI, project number “350/2012 PN-II-ID-PCE-2011-3-0134”, by Romanian Ministry of Education, Grants no. PN-II-09.33-02.05, PN-II-265/2014 and by the Sectorial Operational Programme Human Resources Development (SOPHRD), and financed by the European Social Fund and the Romanian Government under the contract number POSDRU/159/1.5/S/141531.

Compliance with ethical standards

Conflict of interest

None to declare.

Supplementary material

Supplementary material 1 (AVI 33759 kb)

11010_2015_2548_MOESM2_ESM.tif (8.9 mb)
Supplementary material 2 (TIFF 9133 kb)

Supplementary material 3 (AVI 19696 kb)


  1. 1.
    Popescu LM, Faussone-Pellegrini MS (2010) TELOCYTES—a case of serendipity: the winding way from interstitial cells of cajal (ICC), via Interstitial cajal-like cells (ICLC) to TELOCYTES. J Cell Mol Med 14(4):729–740. doi: 10.1111/j.1582-4934.2010.01059.x PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Popescu LM, Nicolescu MI (2013) Telocytes and stem cells. In: Goldenberg RC, de Campos Carvalho AC (eds) Resident stem cells and regenerative therapy. Academic Press/Elsevier, Oxford, pp 205–231CrossRefGoogle Scholar
  3. 3.
    Gherghiceanu M, Popescu LM (2012) Cardiac telocytes—their junctions and functional implications. Cell Tissue Res 348(2):265–279. doi: 10.1007/s00441-012-1333-8 PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Sheng J, Shim W, Lu J, Lim SY, Ong BH, Lim TS, Liew R, Chua YL, Wong P (2014) Electrophysiology of human cardiac atrial and ventricular telocytes. J Cell Mol Med 18(2):355–362. doi: 10.1111/jcmm.12240 PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Popescu LM, Curici A, Wang E, Zhang H, Hu S, Gherghiceanu M (2015) Telocytes and putative stem cells in ageing human heart. J Cell Mol Med 19(1):31–45. doi: 10.1111/jcmm.12509 PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Yang Y, Sun W, Wu SM, Xiao J, Kong X (2014) Telocytes in human heart valves. J Cell Mol Med 18(5):759–765. doi: 10.1111/jcmm.12285 PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Vannucchi MG, Traini C, Manetti M, Ibba-Manneschi L, Faussone-Pellegrini MS (2013) Telocytes express PDGFRalpha in the human gastrointestinal tract. J Cell Mol Med 17(9):1099–1108. doi: 10.1111/jcmm.12134 PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Chen X, Zheng Y, Manole CG, Wang X, Wang Q (2013) Telocytes in human oesophagus. J Cell Mol Med 17(11):1506–1512. doi: 10.1111/jcmm.12149 PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Xiao J, Wang F, Liu Z, Yang C (2013) Telocytes in liver: electron microscopic and immunofluorescent evidence. J Cell Mol Med 17(12):1537–1542. doi: 10.1111/jcmm.12195 PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Li H, Zhang H, Yang L, Lu S, Ge J (2014) Telocytes in mice bone marrow: electron microscope evidence. J Cell Mol Med 18(6):975–978. doi: 10.1111/jcmm.12337 PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Li H, Lu S, Liu H, Ge J, Zhang H (2014) Scanning electron microscope evidence of telocytes in vasculature. J Cell Mol Med 18(7):1486–1489. doi: 10.1111/jcmm.12333 PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Qi G, Lin M, Xu M, Manole CG, Wang X, Zhu T (2012) Telocytes in the human kidney cortex. J Cell Mol Med 16(12):3116–3122. doi: 10.1111/j.1582-4934.2012.01582.x PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Li L, Lin M, Wang R, Zhang C, Qi G, Xu M, Rong R, Zhu T (2014) Renal telocytes contribute to the repair of ischemically injured renal tubules. J Cell Mol Med 18(6):1144–1156. doi: 10.1111/jcmm.12274 PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Zheng Y, Cretoiu D, Yan G, Cretoiu SM, Popescu LM, Fang H, Wang X (2014) Protein profiling of human lung telocytes and microvascular endothelial cells using iTRAQ quantitative proteomics. J Cell Mol Med 18(6):1035–1059. doi: 10.1111/jcmm.12350 PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Galiger C, Kostin S, Golec A, Ahlbrecht K, Becker S, Gherghiceanu M, Popescu LM, Morty RE, Seeger W, Voswinckel R (2014) Phenotypical and ultrastructural features of Oct4-positive cells in the adult mouse lung. J Cell Mol Med 18(7):1321–1333. doi: 10.1111/jcmm.12295 PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Cretoiu SM, Cretoiu D, Marin A, Radu BM, Popescu LM (2013) Telocytes: ultrastructural, immunohistochemical and electrophysiological characteristics in human myometrium. Reproduction 145(4):357–370. doi: 10.1530/REP-12-0369 PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Cretoiu SM, Radu BM, Banciu A, Banciu DD, Cretoiu D, Ceafalan LC, Popescu LM (2015) Isolated human uterine telocytes: immunocytochemistry and electrophysiology of T-type calcium channels. Histochem Cell Biol 143(1):83–94. doi: 10.1007/s00418-014-1268-0 PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Ullah S, Yang P, Zhang L, Zhang Q, Liu Y, Chen W, Waqas Y, Le Y, Chen B, Chen Q (2014) Identification and characterization of telocytes in the uterus of the oviduct in the Chinese soft-shelled turtle, Pelodiscus sinensis: TEM evidence. J Cell Mol Med 18(12):2385–2392. doi: 10.1111/jcmm.12392 PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Luesma MJ, Gherghiceanu M, Popescu LM (2013) Telocytes and stem cells in limbus and uvea of mouse eye. J Cell Mol Med 17(8):1016–1024. doi: 10.1111/jcmm.12111 PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Cretoiu D, Hummel E, Zimmermann H, Gherghiceanu M, Popescu LM (2014) Human cardiac telocytes: 3D imaging by FIB-SEM tomography. J Cell Mol Med 18(11):2157–2164. doi: 10.1111/jcmm.12468 PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Cretoiu D, Gherghiceanu M, Hummel E, Zimmermann H, Simionescu O, Popescu LM (2015) FIB-SEM tomography of human skin telocytes and their extracellular vesicles. J Cell Mol Med 19(4):714–722. doi: 10.1111/jcmm.12578 PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Sun X, Zheng M, Zhang M, Qian M, Zheng Y, Li M, Cretoiu D, Chen C, Chen L, Popescu LM, Wang X (2014) Differences in the expression of chromosome 1 genes between lung telocytes and other cells: mesenchymal stem cells, fibroblasts, alveolar type II cells, airway epithelial cells and lymphocytes. J Cell Mol Med 18(5):801–810. doi: 10.1111/jcmm.12302 PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Zheng M, Sun X, Zhang M, Qian M, Zheng Y, Li M, Cretoiu SM, Chen C, Chen L, Cretoiu D, Popescu LM, Fang H, Wang X (2014) Variations of chromosomes 2 and 3 gene expression profiles among pulmonary telocytes, pneumocytes, airway cells, mesenchymal stem cells and lymphocytes. J Cell Mol Med 18(10):2044–2060. doi: 10.1111/jcmm.12429 PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Wang J, Ye L, Jin M, Wang X (2015) Global analyses of Chromosome 17 and 18 genes of lung telocytes compared with mesenchymal stem cells, fibroblasts, alveolar type II cells, airway epithelial cells, and lymphocytes. Biol Direct 10(1):9. doi: 10.1186/s13062-015-0042-0 PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Zheng Y, Zhang M, Qian M, Wang L, Cismasiu VB, Bai C, Popescu LM, Wang X (2013) Genetic comparison of mouse lung telocytes with mesenchymal stem cells and fibroblasts. J Cell Mol Med 17(4):567–577. doi: 10.1111/jcmm.12052 PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Cismasiu VB, Radu E, Popescu LM (2011) miR-193 expression differentiates telocytes from other stromal cells. J Cell Mol Med 15(5):1071–1074. doi: 10.1111/j.1582-4934.2011.01325.x PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Zheng Y, Cretoiu D, Yan G, Cretoiu SM, Popescu LM, Wang X (2014) Comparative proteomic analysis of human lung telocytes with fibroblasts. J Cell Mol Med 18(4):568–589. doi: 10.1111/jcmm.12290 PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Albulescu RTC, Codrici E, Popescu DI, Cretoiu SM, Popescu LM (2015) The secretome of myocardial telocytes modulates the activity of cardiac stem cells. J Cell Mol Med. doi: 10.1111/jcmm.12624 PubMedCentralPubMedGoogle Scholar
  29. 29.
    Cretoiu SM, Popescu LM (2014) Telocytes revisited. Biomol Concepts 5(5):353–369. doi: 10.1515/bmc-2014-0029 PubMedGoogle Scholar
  30. 30.
    Roatesi I, Radu BM, Cretoiu D, Cretoiu SM (2015) Uterine telocytes: a review of current knowledge. Biol Reprod. doi: 10.1095/biolreprod.114.125906 PubMedGoogle Scholar
  31. 31.
    Vannucchi MG, Bani D, Faussone-Pellegrini MS (2015) Telocytes contribute as cell progenitors and differentiation inductors in tissue regeneration. Curr Stem Cell Res TherGoogle Scholar
  32. 32.
    Niculite CM, Regalia TM, Gherghiceanu M, Huica R, Surcel M, Ursaciuc C, Leabu M, Popescu LM (2015) Dynamics of telopodes (telocyte prolongations) in cell culture depends on extracellular matrix protein. Mol Cell Biochem 398(1–2):157–164. doi: 10.1007/s11010-014-2215-z PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Campeanu RA, Radu BM, Cretoiu SM, Banciu DD, Banciu A, Cretoiu D, Popescu LM (2014) Near-infrared low-level laser stimulation of telocytes from human myometrium. Lasers Med Sci 29(6):1867–1874. doi: 10.1007/s10103-014-1589-1 PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Wang JN, Shi N, Chen SY (2012) Manganese superoxide dismutase inhibits neointima formation through attenuation of migration and proliferation of vascular smooth muscle cells. Free Radic Biol Med 52(1):173–181. doi: 10.1016/j.freeradbiomed.2011.10.442 PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Zhang Y, Zhang HM, Shi Y, Lustgarten M, Li Y, Qi W, Zhang BX, Van Remmen H (2010) Loss of manganese superoxide dismutase leads to abnormal growth and signal transduction in mouse embryonic fibroblasts. Free Radic Biol Med 49(8):1255–1262. doi: 10.1016/j.freeradbiomed.2010.07.006 PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Pagano G, Talamanca AA, Castello G, Cordero MD, d’Ischia M, Gadaleta MN, Pallardo FV, Petrovic S, Tiano L, Zatterale A (2014) Oxidative stress and mitochondrial dysfunction across broad-ranging pathologies: toward mitochondria-targeted clinical strategies. Oxid Med Cell Longev 2014:541230. doi: 10.1155/2014/541230 PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    De la Fuente M, Miquel J (2009) An update of the oxidation-inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging. Curr Pharm Des 15(26):3003–3026CrossRefPubMedGoogle Scholar
  38. 38.
    Kang KW, Lee SJ, Kim SG (2005) Molecular mechanism of nrf2 activation by oxidative stress. Antioxid Redox Signal 7(11–12):1664–1673. doi: 10.1089/ars.2005.7.1664 CrossRefPubMedGoogle Scholar
  39. 39.
    Toledo FD, Perez LM, Basiglio CL, Ochoa JE, Sanchez Pozzi EJ, Roma MG (2014) The Ca(2+)-calmodulin-Ca(2+)/calmodulin-dependent protein kinase II signaling pathway is involved in oxidative stress-induced mitochondrial permeability transition and apoptosis in isolated rat hepatocytes. Arch Toxicol 88(9):1695–1709. doi: 10.1007/s00204-014-1219-5 CrossRefPubMedGoogle Scholar
  40. 40.
    Han Y, Chen JZ (2013) Oxidative stress induces mitochondrial DNA damage and cytotoxicity through independent mechanisms in human cancer cells. Biomed Res Int 2013:825065. doi: 10.1155/2013/825065 PubMedCentralPubMedGoogle Scholar
  41. 41.
    Haines DD, Juhasz B, Tosaki A (2013) Management of multicellular senescence and oxidative stress. J Cell Mol Med 17(8):936–957. doi: 10.1111/jcmm.12074 PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Poehlmann A, Reissig K, Schonfeld P, Walluscheck D, Schinlauer A, Hartig R, Lessel W, Guenther T, Silver A, Roessner A (2013) Repeated H2 O2 exposure drives cell cycle progression in an in vitro model of ulcerative colitis. J Cell Mol Med 17(12):1619–1631. doi: 10.1111/jcmm.12150 PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Sahin E, Depinho RA (2010) Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 464(7288):520–528. doi: 10.1038/nature08982 PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Farah ME, Sirotkin V, Haarer B, Kakhniashvili D, Amberg DC (2011) Diverse protective roles of the actin cytoskeleton during oxidative stress. Cytoskeleton (Hoboken) 68(6):340–354. doi: 10.1002/cm.20516 CrossRefGoogle Scholar
  45. 45.
    Velarde MC, Flynn JM, Day NU, Melov S, Campisi J (2012) Mitochondrial oxidative stress caused by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin. Aging (Albany NY) 4(1):3–12Google Scholar
  46. 46.
    Kanno S, Ishikawa M, Takayanagi M, Takayanagi Y, Sasaki K (2000) Characterization of hydrogen peroxide-induced apoptosis in mouse primary cultured hepatocytes. Biol Pharm Bull 23(1):37–42CrossRefPubMedGoogle Scholar
  47. 47.
    Oyama Y, Okazaki E, Chikahisa L, Nagano T, Sadakata C (1996) Oxidative stress-induced increase in intracellular Ca2+ and Ca(2+)-induced increase in oxidative stress: an experimental model using dissociated rat brain neurons. Jpn J Pharmacol 72(4):381–385CrossRefPubMedGoogle Scholar
  48. 48.
    Duan J, Zhang Z, Tong T (2005) Irreversible cellular senescence induced by prolonged exposure to H2O2 involves DNA-damage-and-repair genes and telomere shortening. Int J Biochem Cell Biol 37(7):1407–1420. doi: 10.1016/j.biocel.2005.01.010 CrossRefPubMedGoogle Scholar
  49. 49.
    Kuramochi Y, Cote GM, Guo X, Lebrasseur NK, Cui L, Liao R, Sawyer DB (2004) Cardiac endothelial cells regulate reactive oxygen species-induced cardiomyocyte apoptosis through neuregulin-1beta/erbB4 signaling. J Biol Chem 279(49):51141–51147. doi: 10.1074/jbc.M408662200 CrossRefPubMedGoogle Scholar
  50. 50.
    Sies H (2014) Role of metabolic H2O2 generation: redox signaling and oxidative stress. J Biol Chem 289(13):8735–8741. doi: 10.1074/jbc.R113.544635 PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Yasuda Y, Yoshinaga N, Murayama T, Nomura Y (1999) Inhibition of hydrogen peroxide-induced apoptosis but not arachidonic acid release in GH3 cell by EGF. Brain Res 850(1–2):197–206CrossRefPubMedGoogle Scholar
  52. 52.
    Sasaki M, Kajiya H, Ozeki S, Okabe K, Ikebe T (2014) Reactive oxygen species promotes cellular senescence in normal human epidermal keratinocytes through epigenetic regulation of p16(INK4a.). Biochem Biophys Res Commun 452(3):622–628. doi: 10.1016/j.bbrc.2014.08.123 CrossRefPubMedGoogle Scholar
  53. 53.
    Kim YK, Bae GU, Kang JK, Park JW, Lee EK, Lee HY, Choi WS, Lee HW, Han JW (2006) Cooperation of H2O2-mediated ERK activation with Smad pathway in TGF-beta1 induction of p21WAF1/Cip1. Cell Signal 18(2):236–243. doi: 10.1016/j.cellsig.2005.04.008 CrossRefPubMedGoogle Scholar
  54. 54.
    Choi J, Park SJ, Jo EJ, Lee HY, Hong S, Kim SJ, Kim BC (2013) Hydrogen peroxide inhibits transforming growth factor-beta1-induced cell cycle arrest by promoting Smad3 linker phosphorylation through activation of Akt-ERK1/2-linked signaling pathway. Biochem Biophys Res Commun 435(4):634–639. doi: 10.1016/j.bbrc.2013.05.035 CrossRefPubMedGoogle Scholar
  55. 55.
    Leiser SF, Miller RA (2010) Nrf2 signaling, a mechanism for cellular stress resistance in long-lived mice. Mol Cell Biol 30(3):871–884. doi: 10.1128/MCB.01145-09 PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Gioran A, Nicotera P, Bano D (2014) Impaired mitochondrial respiration promotes dendritic branching via the AMPK signaling pathway. Cell Death Dis 5(4):e1175. doi: 10.1038/cddis.2014.144 CrossRefPubMedGoogle Scholar
  57. 57.
    Zou Y, Corniola R, Leu D, Khan A, Sahbaie P, Chakraborti A, Clark DJ, Fike JR, Huang TT (2012) Extracellular superoxide dismutase is important for hippocampal neurogenesis and preservation of cognitive functions after irradiation. Proc Natl Acad Sci USA 109(52):21522–21527. doi: 10.1073/pnas.1216913110 PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Jackson AC, Kammouni W, Zherebitskaya E, Fernyhough P (2010) Role of oxidative stress in rabies virus infection of adult mouse dorsal root ganglion neurons. J Virol 84(9):4697–4705. doi: 10.1128/JVI.02654-09 PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Liang FP, Lien JC, Wu YH, Chen CS, Juang SH (2015) Em08red, a dual functional antiproliferative emodin analogue, is a downregulator of ErbB2 expression and inducer of intracellular oxidative stress. Drug Des Devel Ther 9:1499–1510. doi: 10.2147/DDDT.S66647 PubMedCentralPubMedGoogle Scholar
  60. 60.
    Liu H, Gooneratne R, Huang X, Lai R, Wei J, Wang W (2015) A rapid in vivo zebrafish model to elucidate oxidative stress-mediated PCB126-induced apoptosis and developmental toxicity. Free Radic Biol Med 84:91–102. doi: 10.1016/j.freeradbiomed.2015.03.002 CrossRefPubMedGoogle Scholar
  61. 61.
    Rahimmi A, Khosrobakhsh F, Izadpanah E, Moloudi MR, Hassanzadeh K (2015) N-acetylcysteine prevents rotenone-induced Parkinson’s disease in rat: an investigation into the interaction of parkin and Drp1 proteins. Brain Res Bull 113:34–40. doi: 10.1016/j.brainresbull.2015.02.007 CrossRefPubMedGoogle Scholar
  62. 62.
    Desclaux M, Teigell M, Amar L, Vogel R, Gimenez YRM, Privat A, Mallet J (2009) A novel and efficient gene transfer strategy reduces glial reactivity and improves neuronal survival and axonal growth in vitro. PLoS One 4(7):e6227. doi: 10.1371/journal.pone.0006227 PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Joseph R, Srivastava OP, Pfister RR (2014) Downregulation of beta-actin and its regulatory gene HuR affect cell migration of human corneal fibroblasts. Mol Vis 20:593–605PubMedCentralPubMedGoogle Scholar
  64. 64.
    Takaki A, Yamamoto K (2015) Control of oxidative stress in hepatocellular carcinoma: helpful or harmful? World J Hepatol 7(7):968–979. doi: 10.4254/wjh.v7.i7.968 PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Fertig ET, Gherghiceanu M, Popescu LM (2014) Extracellular vesicles release by cardiac telocytes: electron microscopy and electron tomography. J Cell Mol Med 18(10):1938–1943. doi: 10.1111/jcmm.12436 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Cellular, Molecular Biology and Histology“Carol Davila” University of Medicine and PharmacyBucharest 5Romania
  2. 2.“Victor Babeş” National Institute of PathologyBucharest 5Romania

Personalised recommendations