Molecular and Cellular Biochemistry

, Volume 410, Issue 1–2, pp 25–35 | Cite as

NF45 overexpression is associated with poor prognosis and enhanced cell proliferation of pancreatic ductal adenocarcinoma

  • Chunhua Wan
  • Chen Gong
  • Li Ji
  • Xiaorong Liu
  • Yayun Wang
  • Liang Wang
  • Mengting Shao
  • Linlin Yang
  • Shaoqing Fan
  • Yin Xiao
  • Xiaotong Wang
  • Manhua Li
  • Guoxiong ZhouEmail author
  • Yixin ZhangEmail author


NF45, also referred to as nuclear factor of activated T cells, has been reported to promote the progression of multiple cancer types. However, the expression and physiological significance of NF45 in pancreatic ductal adenocarcinoma (PDAC) remain largely elusive. In this study, we investigated the clinical relevance and potential role of NF45 expression in PDAC development. Western blot analysis revealed that NF45 was remarkably upregulated in PDAC tissues, compared with the adjacent non-tumorous ones. In addition, the expression of NF45 in 122 patients with PDAC was evaluated using immunohistochemistry. In this way, we found that NF45 was abundantly expressed in PDAC tissues, and the expression of NF45 was correlated with tumor size (p = 0.007), histological differentiation (p = 0.033), and TNM stage (p = 0.001). Importantly, patients with low levels of NF45 expression exhibited better postoperative prognosis as compared with those with high NF45 expression. Furthermore, using PDAC cell cultures, we found that interference of NF45 expression using siRNA oligos suppressed PDAC cell proliferation and retarded cell cycle progression. Moreover, depletion of NF45 impaired the levels of cellular cyclin E and proliferating cell nuclear antigen (PCNA). Conversely, overexpression of NF45 facilitated the cell growth and accelerated cell cycle progression. Our results establish NF45 as an important indicator of PDAC prognosis with potential utility as a therapeutic target in this lethal disease.


NF45 Pancreatic ductal adenocarcinoma (PDAC) Prognosis Cell proliferation 



We thank Dr. Martin Holcik of University of Ottawa for kindly offering us the pcDNA3-Flag-NF45 construct. This work was supported by the National Natural Scientific Foundation of China (No. 81072028) and Jiangsu Province’s Outstanding Medical Academic Leader program (No. LJ101135).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11010_2015_2535_MOESM1_ESM.tif (1.1 mb)
Supplementary material 1 (TIFF 1160 kb)


  1. 1.
    Ryan DP, Hong TS, Bardeesy N (2014) Pancreatic adenocarcinoma. N Engl J Med 371:1039–1049. doi: 10.1056/NEJMra1404198 CrossRefPubMedGoogle Scholar
  2. 2.
    Schneider G, Siveke JT, Eckel F, Schmid RM (2005) Pancreatic cancer: basic and clinical aspects. Gastroenterology 128:1606–1625CrossRefPubMedGoogle Scholar
  3. 3.
    Collisson EA, Sadanandam A, Olson P, Gibb WJ, Truitt M, Gu S, Cooc J, Weinkle J, Kim GE, Jakkula L, Feiler HS, Ko AH, Olshen AB, Danenberg KL, Tempero MA, Spellman PT, Hanahan D, Gray JW (2011) Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med 17:500–503. doi: 10.1038/nm.2344 PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Edlund H (2002) Pancreatic organogenesis—developmental mechanisms and implications for therapy. Nat Rev Genet 3:524–532. doi: 10.1038/nrg841 CrossRefPubMedGoogle Scholar
  5. 5.
    Kao PN, Chen L, Brock G, Ng J, Kenny J, Smith AJ, Corthesy B (1994) Cloning and expression of cyclosporin A- and FK506-sensitive nuclear factor of activated T-cells: NF45 and NF90. J Biol Chem 269:20691–20699PubMedGoogle Scholar
  6. 6.
    Reichman TW, Muniz LC, Mathews MB (2002) The RNA binding protein nuclear factor 90 functions as both a positive and negative regulator of gene expression in mammalian cells. Mol Cell Biol 22:343–356. doi: 10.1128/mcb.22.1.343-356.2002 PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Zhao G, Shi L, Qiu D, Hu H, Kao PN (2005) NF45/ILF2 tissue expression, promoter analysis, and interleukin-2 transactivating function. Exp Cell Res 305:312–323. doi: 10.1016/j.yexcr.2004.12.030 CrossRefPubMedGoogle Scholar
  8. 8.
    Sakamoto S, Aoki K, Higuchi T, Todaka H, Morisawa K, Tamaki N, Hatano E, Fukushima A, Taniguchi T, Agata Y (2009) The NF90–NF45 complex functions as a negative regulator in the microRNA processing pathway. Mol Cell Biol 29:3754–3769. doi: 10.1128/MCB.01836-08 PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Stricker RL, Behrens SE, Mundt E (2010) Nuclear factor NF45 interacts with viral proteins of infectious bursal disease virus and inhibits viral replication. J Virol 84:10592–10605. doi: 10.1128/JVI.02506-09 PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Isken O, Baroth M, Grassmann CW, Weinlich S, Ostareck DH, Ostareck-Lederer A, Behrens SE (2007) Nuclear factors are involved in hepatitis C virus RNA replication. RNA 13:1675–1692. doi: 10.1261/rna.594207 PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Huang Q, He X, Qiu X, Liu X, Sun G, Guo J, Ding Z, Yang L, Ban N, Tao T, Wang D (2014) Expression of NF45 correlates with malignant grade in gliomas and plays a pivotal role in tumor growth. Tumour Biol 35:10149–10157. doi: 10.1007/s13277-014-2310-5 CrossRefPubMedGoogle Scholar
  12. 12.
    Shamanna RA, Hoque M, Pe’ery T, Mathews MB (2012) Induction of p53, p21 and apoptosis by silencing the NF90/NF45 complex in human papilloma virus-transformed cervical carcinoma cells. Oncogene 32:5176–5185. doi: 10.1038/onc.2012.533 PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Ni S, Zhu J, Zhang J, Zhang S, Li M, Ni R, Liu J, Qiu H, Chen W, Wang H, Guo W (2014) Expression and clinical role of NF45 as a novel cell cycle protein in esophageal squamous cell carcinoma (ESCC). Tumor Biol. doi: 10.1007/s13277-014-2683-5 Google Scholar
  14. 14.
    Graber TE, Baird SD, Kao PN, Mathews MB, Holcik M (2010) NF45 functions as an IRES trans-acting factor that is required for translation of cIAP1 during the unfolded protein response. Cell Death Differ 17:719–729. doi: 10.1038/cdd.2009.164 CrossRefPubMedGoogle Scholar
  15. 15.
    Faye MD, Graber TE, Liu P, Thakor N, Baird SD, Durie D, Holcik M (2013) Nucleotide composition of cellular internal ribosome entry sites defines dependence on NF45 and predicts a posttranscriptional mitotic regulon. Mol Cell Biol 33:307–318. doi: 10.1128/MCB.00546-12 PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Haselmann V, Kurz A, Bertsch U, Hubner S, Olempska-Muller M, Fritsch J, Hasler R, Pickl A, Fritsche H, Annewanter F, Engler C, Fleig B, Bernt A, Roder C, Schmidt H, Gelhaus C, Hauser C, Egberts JH, Heneweer C, Rohde AM, Boger C, Knippschild U, Rocken C, Adam D, Walczak H, Schutze S, Janssen O, Wulczyn FG, Wajant H, Kalthoff H, Trauzold A (2014) Nuclear death receptor TRAIL-R2 inhibits maturation of let-7 and promotes proliferation of pancreatic and other tumor cells. Gastroenterology 146:278–290. doi: 10.1053/j.gastro.2013.10.009 CrossRefPubMedGoogle Scholar
  17. 17.
    Wolfgang CL, Herman JM, Laheru DA, Klein AP, Erdek MA, Fishman EK, Hruban RH (2013) Recent progress in pancreatic cancer. CA Cancer J Clin 63:318–348. doi: 10.3322/caac.21190 PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Costello E, Greenhalf W, Neoptolemos JP (2012) New biomarkers and targets in pancreatic cancer and their application to treatment. Nat Rev Gastroenterol Hepatol 9:435–444. doi: 10.1038/nrgastro.2012.119 CrossRefPubMedGoogle Scholar
  19. 19.
    Kern SE, Shi C, Hruban RH (2011) The complexity of pancreatic ductal cancers and multidimensional strategies for therapeutic targeting. J Pathol 223:295–306. doi: 10.1002/path.2813 PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Guan D, Altan-Bonnet N, Parrott AM, Arrigo CJ, Li Q, Khaleduzzaman M, Li H, Lee CG, Pe’ery T, Mathews MB (2008) Nuclear factor 45 (NF45) is a regulatory subunit of complexes with NF90/110 involved in mitotic control. Mol Cell Biol 28:4629–4641. doi: 10.1128/MCB.00120-08 PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Iacobuzio-Donahue CA, Maitra A, Olsen M, Lowe AW, van Heek NT, Rosty C, Walter K, Sato N, Parker A, Ashfaq R, Jaffee E, Ryu B, Jones J, Eshleman JR, Yeo CJ, Cameron JL, Kern SE, Hruban RH, Brown PO, Goggins M (2003) Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Am J Pathol 162:1151–1162. doi: 10.1016/S0002-9440(10)63911-9 PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Cartier J, Berthelet J, Marivin A, Gemble S, Edmond V, Plenchette S, Lagrange B, Hammann A, Dupoux A, Delva L, Eymin B, Solary E, Dubrez L (2011) Cellular inhibitor of apoptosis protein-1 (cIAP1) can regulate E2F1 transcription factor-mediated control of cyclin transcription. J Biol Chem 286:26406–26417. doi: 10.1074/jbc.M110.191239 PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Bharadwaj U, Li M, Chen C, Yao Q (2008) Mesothelin-induced pancreatic cancer cell proliferation involves alteration of cyclin E via activation of signal transducer and activator of transcription protein 3. Mol Cancer Res 6:1755–1765. doi: 10.1158/1541-7786.MCR-08-0095 PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Skalicky DA, Kench JG, Segara D, Coleman MJ, Sutherland RL, Henshall SM, Musgrove EA, Biankin AV (2006) Cyclin E expression and outcome in pancreatic ductal adenocarcinoma. Cancer Epidemiol Biomark Prev 15:1941–1947. doi: 10.1158/1055-9965.EPI-06-0319 CrossRefGoogle Scholar
  25. 25.
    Reichman TW, Parrott AM, Fierro-Monti I, Caron DJ, Kao PN, Lee CG, Li H, Mathews MB (2003) Selective regulation of gene expression by nuclear factor 110, a member of the NF90 family of double-stranded RNA-binding proteins. J Mol Biol 332:85–98CrossRefPubMedGoogle Scholar
  26. 26.
    Kuwano Y, Pullmann R Jr, Marasa BS, Abdelmohsen K, Lee EK, Yang X, Martindale JL, Zhan M, Gorospe M (2010) NF90 selectively represses the translation of target mRNAs bearing an AU-rich signature motif. Nucleic Acids Res 38:225–238. doi: 10.1093/nar/gkp861 PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Kenneth NS, Duckett CS (2012) IAP proteins: regulators of cell migration and development. Curr Opin Cell Biol 24:871–875. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  28. 28.
    Vogler M, Durr K, Jovanovic M, Debatin KM, Fulda S (2007) Regulation of TRAIL-induced apoptosis by XIAP in pancreatic carcinoma cells. Oncogene 26:248–257. doi: 10.1038/sj.onc.1209776 CrossRefPubMedGoogle Scholar
  29. 29.
    Vogler M, Walczak H, Stadel D, Haas TL, Genze F, Jovanovic M, Bhanot U, Hasel C, Moller P, Gschwend JE, Simmet T, Debatin KM, Fulda S (2009) Small molecule XIAP inhibitors enhance TRAIL-induced apoptosis and antitumor activity in preclinical models of pancreatic carcinoma. Cancer Res 69:2425–2434. doi: 10.1158/0008-5472.CAN-08-2436 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Chunhua Wan
    • 1
    • 2
  • Chen Gong
    • 3
  • Li Ji
    • 3
  • Xiaorong Liu
    • 2
  • Yayun Wang
    • 2
  • Liang Wang
    • 2
  • Mengting Shao
    • 2
  • Linlin Yang
    • 2
  • Shaoqing Fan
    • 3
  • Yin Xiao
    • 3
  • Xiaotong Wang
    • 3
  • Manhua Li
    • 3
  • Guoxiong Zhou
    • 3
    Email author
  • Yixin Zhang
    • 4
    Email author
  1. 1.Department of Nutrition and Food Hygiene, School of Public HealthNantong UniversityNantongChina
  2. 2.Jiangsu Province Key Laboratory for Inflammation and Molecular Drug TargetNantong UniversityNantongChina
  3. 3.Department of GastroenterologyAffiliated Hospital of Nantong UniversityNantongChina
  4. 4.Department of General SurgeryNantong University Cancer HospitalNantongChina

Personalised recommendations