Molecular and Cellular Biochemistry

, Volume 408, Issue 1–2, pp 163–170 | Cite as

Myricetin inhibits proliferation and induces apoptosis and cell cycle arrest in gastric cancer cells

  • Jianfang Feng
  • Xiaonan Chen
  • Yuanyuan Wang
  • Yuwen Du
  • Qianqian Sun
  • Wenqiao Zang
  • Guoqiang ZhaoEmail author


Myricetin is a flavonoid that is abundant in fruits and vegetables and has protective effects against cancer and diabetes. However, the mechanism of action of myricetin against gastric cancer (GC) is not fully understood. We researched myricetin on the proliferation, apoptosis, and cell cycle in GC HGC-27 and SGC7901 cells, to explore the underlying mechanism of action. Cell Counting Kit (CCK)-8 assay, Western blotting, cell cycle analysis, and apoptosis assay were used to evaluate the effects of myricetin on cell proliferation, apoptosis, and the cell cycle. To analyze the binding properties of ribosomal S6 kinase 2 (RSK2) with myricetin, surface plasmon resonance (SPR) analysis was performed. CCK8 assay showed that myricetin inhibited GC cell proliferation. Flow cytometry analysis showed that myricetin induces apoptosis and cell cycle arrest in GC cells. Western blotting indicated that myricetin influenced apoptosis and cell cycle arrest of GC cells by regulating related proteins. SPR analysis showed strong binding affinity of RSK2 and myricetin. Myricetin bound to RSK2, leading to increased expression of Mad1, and contributed to inhibition of HGC-27 and SGC7901 cell proliferation. Our results suggest the therapeutic potential of myricetin in GC.


Myricetin Gastric cancer Ribosomal S6 kinase 2 Mad1 


  1. 1.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917CrossRefPubMedGoogle Scholar
  2. 2.
    Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300CrossRefPubMedGoogle Scholar
  3. 3.
    Crew KD, Neugut AI (2006) Epidemiology of gastric cancer. World J Gastroenterol 12:354–362PubMedCentralPubMedGoogle Scholar
  4. 4.
    Weng CJ, Yen GC (2012) Flavonoids, a ubiquitous dietary phenolic subclass, exert extensive in vitro anti-invasive and in vivo anti-metastatic activities. Cancer Metastasis Rev 31:323–351CrossRefPubMedGoogle Scholar
  5. 5.
    López-Lázaro M, Willmore E, Austin CA (2010) The dietary flavonoids myricetin and fisetin act as dual inhibitors of DNA topoisomerases I and II in cells. Mutat Res 696:41–47CrossRefPubMedGoogle Scholar
  6. 6.
    Frödin M, Jensen CJ, Merienne K, Gammeltoft S (2000) A phosphoserine-regulated docking site in the protein kinase RSK2 that recruits and activates PDK1. EMBO J 19:2924–2934PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Artamonov M, Momotani K, Utepbergenov D, Franke A, Khromov A, Derewenda ZS, Somlyo AV (2013) The p90 ribosomal S6 kinase (RSK) is a mediator of smooth muscle contractility. PLoS ONE 8:e58703PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Yoon S, Seger R (2006) The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24:21–44CrossRefPubMedGoogle Scholar
  9. 9.
    Rubinfeld H, Seger R (2005) The ERK cascade: a prototype of MAPK signaling. Mol Biotechnol 31:151–174CrossRefPubMedGoogle Scholar
  10. 10.
    Yong HY, Koh MS, Moon A (2009) The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer. Expert Opin Investig Drugs 18:1893–1905CrossRefPubMedGoogle Scholar
  11. 11.
    Meyuhas O (2008) Physiological roles of ribosomal protein S6: one of its kinds. Int Rev Cell Mol Biol 268:1–37CrossRefPubMedGoogle Scholar
  12. 12.
    Zang W, Wang T, Wang Y, Li M, Xuan X, Ma Y, Du Y, Liu K, Dong Z, Zhao G (2014) Myricetin exerts anti- proliferative, anti-invasive, and pro-apoptotic effects on esophageal carcinoma EC9706 and KYSE30 cells via RSK2. Tumor Biol 35:12583–12592CrossRefGoogle Scholar
  13. 13.
    Ren W, Qiao Z, Wang H, Zhu L, Zhang L (2003) Flavonoids: promising anticancer agents. Med Res Rev 23:519–534CrossRefPubMedGoogle Scholar
  14. 14.
    Galati G, O’Brien PJ (2004) Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic Biol Med 37:287–303CrossRefPubMedGoogle Scholar
  15. 15.
    Kuntz S, Wenzel U, Daniel H (1999) Comparative analysis of the effects of flavonoids on proliferation, cytotoxicity, and apoptosis in human colon cancer cell lines. Eur J Nutr 38:133–142CrossRefPubMedGoogle Scholar
  16. 16.
    Jung SK, Lee KW, Byun S, Kang NJ, Lim SH, Heo YS, Bode AM, Bowden GT, Lee HJ, Dong Z (2008) Myricetin suppresses UVB-induced skin cancer by targeting Fyn. Cancer Res 68:6021–6029CrossRefPubMedGoogle Scholar
  17. 17.
    Rodgers EH, Grant MH (1998) The effect of the flavonoids, quercetin, myricetin and epicatechin on the growth and enzyme activities of MCF7 human breast cancer cells. Chem Biol Interact 116:213–228CrossRefPubMedGoogle Scholar
  18. 18.
    Maggiolini M, Recchia AG, Bonofiglio D, Catalano S, Vivacqua A, Carpino A, Rago V, Rossi R, Andò S (2005) The red wine phenolics piceatannol and myricetin act as agonists for estrogen receptor alpha in human breast cancer cells. J Mol Endocrinol 35:269–281CrossRefPubMedGoogle Scholar
  19. 19.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefPubMedGoogle Scholar
  20. 20.
    Molinari M (2000) Cell cycle checkpoints and their inactivation inhuman cancer. Cell Prolif 33:261–274CrossRefPubMedGoogle Scholar
  21. 21.
    Choi EJ, Ahn WS (2008) Kaempferol induced the apoptosis via cell cycle arrest in human breast cancer MDA-MB-453 cells. Nutr Res Pract 2:322–325PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Anjum R, Blenis J (2008) The RSK family of kinases: emerging roles in cellular signalling. Nat Rev Mol Cell Biol 9:747–758CrossRefPubMedGoogle Scholar
  23. 23.
    Gawecka JE, Young-Robbins SS, Sulzmaier FJ, Caliva MJ, Heikkilä MM, Matter ML, Ramos JW (2012) RSK2 protein suppresses integrin activation and fibronectin matrix assembly and promotes cell migration. J Biol Chem 287:43424–43437PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    van Jaarsveld MT, Blijdorp IC, Boersma AW, Pothof J, Mathijssen RH, Verweij J, Wiemer EA (2013) The kinase RSK2 modulates the sensitivity of ovarian cancer cells to cisplatin. Eur J Cancer 49:345–351CrossRefPubMedGoogle Scholar
  25. 25.
    Eisinger-Mathason TS, Andrade J, Lannigan DA (2010) RSK in tumorigenesis: connections to steroid signaling. Steroids 75:191–202PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Hilinski MK, Mrozowski RM, Clark DE, Lannigan DA (2012) Analogs of the RSK inhibitor SL0101: optimization of in vitro biological stability. Bioorg Med Chem Lett 22:3244–3247PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Lu W, Liu X, Cao X, Xue M, Liu K, Zhao Z, Shen X, Jiang H, Xu Y, Huang J, Li H (2011) SHAFTS: a hybrid approach for 3D molecular similarity calculation. 2. Prospective case study in the discovery of diverse p90 ribosomal S6 protein kinase 2 inhibitors to suppress cell migration. J Med Chem 54:3564–3574CrossRefPubMedGoogle Scholar
  28. 28.
    Peng C, Zhu F, Wen W, Yao K, Li S, Zykova T, Liu K, Li X, Ma WY, Bode AM, Dong Z (2012) Tumor necrosis factor receptor-associated factor family protein 2 is a key mediator of the epidermal growth factor-induced ribosomal S6 kinase 2/cAMP responsive element-binding protein/Fos protein signaling pathway. J Biol Chem 287:25881–25892PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Malakhova M, Kurinov I, Liu K, Zheng D, D’Angelo I, Shim JH, Steinman V, Bode AM, Dong Z (2009) Structural diversity of the active N-terminal kinase domain of p90ribosomal S6 kinase 2. PLoS One 4:e8044PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Rottmann S, Lüscher B (2006) The Mad side of the Max network: antagonizing the function of Myc and more. Curr Top Microbiol Immunol 302:63–122PubMedGoogle Scholar
  31. 31.
    Vigneron S, Brioudes E, Burgess A, Labbé JC, Lorca T, Castro A (2010) RSK2 is a kinetochore-associated protein that participates in the spindle assembly checkpoint. Oncogene 29:3566–3574CrossRefPubMedGoogle Scholar
  32. 32.
    Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME (1999) Cell survival promoted by the Ras-MAPK signaling pathway by transcription -dependent and -independent mechanisms. Science 286:1358–1362CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jianfang Feng
    • 1
  • Xiaonan Chen
    • 2
  • Yuanyuan Wang
    • 2
  • Yuwen Du
    • 2
  • Qianqian Sun
    • 2
  • Wenqiao Zang
    • 2
  • Guoqiang Zhao
    • 2
    Email author
  1. 1.Medical College of Henan University of Science and TechnologyLuoyangChina
  2. 2.College of Basic Medical SciencesZhengzhou UniversityZhengzhouChina

Personalised recommendations