Advertisement

Molecular and Cellular Biochemistry

, Volume 407, Issue 1–2, pp 223–237 | Cite as

Myricetin induces apoptosis by inhibiting P21 activated kinase 1 (PAK1) signaling cascade in hepatocellular carcinoma

  • Soumya C. Iyer
  • Ashidha Gopal
  • Devaraj HalagowderEmail author
Article

Abstract

Hepatocellular carcinoma is one of the most common malignancies worldwide and evidence suggests that Ras signaling regulates various hallmarks of cancer via regulating several effector pathways such as ERK and PI3K. The aim of the present study is to understand the efficacy of a flavonoid myricetin for the first time in inhibiting the downstream target p21 activated kinase 1 (PAK1) of Ras signaling pathway in hepatocellular carcinoma. The analysis of gene expression revealed that myricetin inhibits PAK1 by abrogating the Ras-mediated signaling by decelerating Wnt signaling, the downstream of Erk/Akt, thereby inducing intrinsic caspase-mediated mitochondrial apoptosis by downregulating the expression of anti-apoptotic Bcl-2 and survivin and upregulating pro-apoptotic Bax. The results also provide striking evidence that the myricetin inhibits the development of HCC by inhibiting PAK1 via coordinate abrogation of MAPK/ERK and PI3K/AKT and their downstream signaling Wnt/β-catenin pathway, thus being a promising candidate for cancer prevention and therapy.

Keywords

PAK1 Myricetin Erk1/2 β-Catenin 

Notes

Acknowledgments

We acknowledge Department of Biotechnology (Project No. BT/PR1440/AAQ/03/532/2010) for financial assistance.

Conflict of interest

None.

Supplementary material

11010_2015_2471_MOESM1_ESM.tif (4.6 mb)
Supplementary material 1 (TIFF 4668 kb)
11010_2015_2471_MOESM2_ESM.docx (13 kb)
Supplementary material 2 (DOCX 13 kb)

References

  1. 1.
    Farazi PA, DePinho RA (2006) Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 6:674–687CrossRefPubMedGoogle Scholar
  2. 2.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics. CA Cancer J Clin 58:71–96CrossRefPubMedGoogle Scholar
  3. 3.
    Anzola M (2004) Hepatocellular carcinoma: role of hepatitis B and hepatitis C viruses proteins in hepatocarcinogenesis. J Viral Hepat 11:383–393CrossRefPubMedGoogle Scholar
  4. 4.
    Fattovich G, Stroffolini T, Zagni I, Donato F (2004) Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology 127:S35–S50CrossRefPubMedGoogle Scholar
  5. 5.
    Bosch FX, Ribes J, Cleries R, Diaz M (2005) Epidemiology of hepatocellular carcinoma. Clin Liver Dis 9:191–211CrossRefPubMedGoogle Scholar
  6. 6.
    Buchmann A, Bauer-Hoffmann R, Mahr J, Drinkwater NR, Luz A, Schwarz M (1991) Mutational activation of c-Ha-ras gene in liver tumors of different rodent strains: correlation with susceptibility to hepatocarcinogenesis. Proc Natl Acad Sci USA 88:333–338CrossRefGoogle Scholar
  7. 7.
    Downward J (2003) Targeting RAS signaling pathways in cancer therapy. Nat Rev Cancer 3:11–22CrossRefPubMedGoogle Scholar
  8. 8.
    Bagheri-Yarmand R, Vadlamudi RK, Wang RA, Mendelsohn J, Kumar R (2000) Vascular endothelial growth factor up-regulation via p21-activated kinase-1 signaling regulates heregulin- h1-mediated angiogenesis. J Biol Chem 275:39451–39457CrossRefPubMedGoogle Scholar
  9. 9.
    Carter JH, Douglass LE, Deddens JA, Colligan BM, Bhatt TR, Pemberton JO, Konicek S, Hom J, Marshall M, Graff JR (2004) Pak-1 expression increases with progression of colorectal carcinomas to metastasis. Clin Cancer Res 10:3448–3456CrossRefPubMedGoogle Scholar
  10. 10.
    Kumar R, Gururaj AE, Barnes CJ (2006) p21-activated kinases in cancer. Nat Rev Can 6:459–471CrossRefGoogle Scholar
  11. 11.
    Bokoch GM (2003) Biology of the p21-activated kinases. Annu Rev Biochem 72:743–781CrossRefPubMedGoogle Scholar
  12. 12.
    Molli PR, Li DQ, Murray BW, Rayala SK, Kumar R (2009) PAK signaling in oncogenesis. Oncogene 28:2545–2555PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Higuchi M, Onishi K, Kikuchii C, Gotoh Y (2008) Scaffolding function of PAK in the PDK1–Akt pathway. Nat Cell Biol 10:1356–1364CrossRefPubMedGoogle Scholar
  14. 14.
    Mao K, Kobayashi S, Jaffer ZM, Huang Y, Volden P, Chernoff J, Liang Q (2008) Regulation of Akt/PKB activity by P21-activated kinase in cardiomyocytes. J Mol Cell Cardiol 44:429–434PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Ding Q, Xia W, Liu JC, Yang JY, Lee DF, Xia J, Bartholomeusz G, Li Y, Pan Y, Li Z, Barquo RC, Kin J, Lai CC, Tsai FJ, Tsai CH, Hung MC (2005) Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin. Mol Cell 19:159–170CrossRefPubMedGoogle Scholar
  16. 16.
    De Luca A, Maiello MR, D’Alessio A, Pergameno M, Normanno N (2012) The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets 16:S17–S27CrossRefPubMedGoogle Scholar
  17. 17.
    Gopal U, Venkatraman J, Devaraj N, Devaraj H (2011) Nuclear translocation of b-catenin correlates with CD44 upregulation in Helicobacter pylori-infected gastric carcinoma. Mol Cell Biochem 357:283–293CrossRefGoogle Scholar
  18. 18.
    Gonzalez FJ (2006) Role of β-catenin in the adult liver. Hepatology 43:650–653PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Lau WY, Lai EC (2008) Hepatocellular carcinoma: current management and recent advances. Hepato Pancreat Dis Int 7:237–257Google Scholar
  20. 20.
    Chahar MK, Sharma N, Dobhal MP, Joshi YC (2011) Flavonoids: a versatile source of anticancer drugs. Pharmacogn Rev 5:1–12PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Ong KC, Khoo HE (1997) Biological effects of myricetin. Gen Pharmacol 29:121–126CrossRefPubMedGoogle Scholar
  22. 22.
    Shih YW, Wu PF, Lee YC, Shi MD, Chiang TA (2009) Myricetin suppresses invasion and migration of human lung adenocarcinoma A549 cells: possible mediation by blocking the ERK signaling pathway. J Agric Food Chem 57:3490–3499CrossRefPubMedGoogle Scholar
  23. 23.
    Cheng L, Sung CL, Jin K, Jun SC (2011) Effects of myricetin, an anticancer compound, on the bioavailability and pharmacokinetics of tamoxifen and its main metabolite, 4-hydroxytamoxifen, in rats. Eur J Drug Metab Pharmacokinet 36:175–182CrossRefGoogle Scholar
  24. 24.
    Hai W, Kim C, Song S, Kang C (2001) Study on mechanism of multistep hepatotumorigenesis in rat: development of hepatotumorigenesis. J Vet Sci 2:53–58Google Scholar
  25. 25.
    Khan SM, Devaraj H, Devaraj SN (2011) Chrysin abrogates early hepatocarcinogenesis and induces apoptosis in N-nitrosodiethylamine induced preneoplastic nodules in rats. Toxicol Appl Pharmacol 251:85–94CrossRefPubMedGoogle Scholar
  26. 26.
    Khan SM, Devaraj H, Devaraj SN (2011) Methylated chrysin, a dimethoxy flavone, partially suppresses the development of liver preneoplastic lesions induced by N-Nitrosodiethylamine in rats. Food Chem Toxicol 49:173–178CrossRefPubMedGoogle Scholar
  27. 27.
    King J (1965) The dehydrogenases or oxidoreductase-lactate dehydrogenase. In: Van D (ed) Practical clinical enzymology. Nostrand Company Ltd., London, pp 83–93Google Scholar
  28. 28.
    King J (1965) The hydrolases-acid and alkaline phosphatases. In: Van D (ed) Practical clinical enzymology. Nostrand Company Ltd., London, pp 191–208Google Scholar
  29. 29.
    King J (1965) The transferases—alanine and aspartate transaminases. In: Van D (ed) Practical clinical enzymology. Nostrand Company Ltd., London, pp 121–128Google Scholar
  30. 30.
    Rosali SB, Rau D (1972) Serum gamma-glutamyl transpeptidase activity in alcoholism. Clin Chim Acta 39:41–47CrossRefGoogle Scholar
  31. 31.
    Bergmeyer HU, Bernt E (1974) Aminotransferases and related enzymes. In: Bergmeyer HU (ed) Methods of enzymatic analysis, 2nd edn. Academic Press, New York, pp 735–763CrossRefGoogle Scholar
  32. 32.
    Sell S, Beckar FF (1978) Alpha feto protein. Natl Cancer Inst 60:19–26Google Scholar
  33. 33.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  34. 34.
    Sivaramakrishnan V, Shilpa PNM, Kumar VRP, Devaraj SN (2008) Attenuation of N- nitrosodiethylamine-induced hepatocellular carcinogenesis by a novel flavonol—Morin. Chem Biol Interact 171:79–88CrossRefPubMedGoogle Scholar
  35. 35.
    Sun F, Zheng XY, Ye J, Wu TT, Wang J, Chen W (2012) Potential anticancer activity of myricetin in human T24 bladder cancer cells both in vitro and in vivo. Nutr Cancer 64:599–606CrossRefPubMedGoogle Scholar
  36. 36.
    Zhang S, Wang L, Liu H, Zhao G, Ming L (2014) Enhancement of recombinant myricetin on the radiosensitivity of lung cancer A549 and H1299 cells. Diagn Pathol 9:68PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Shields JM, Pruitt K, McFall A, Shaub A, Der CJ (2000) Understanding Ras: ‘it ain’t over ‘til it’s over’. Trends Cell Biol 10:147–154CrossRefPubMedGoogle Scholar
  38. 38.
    Feig LA, Buchsbaum RJ (2002) Cell signaling: life or death decision of ras proteins. Curr Biol 12:R259–R261CrossRefPubMedGoogle Scholar
  39. 39.
    Huynh N, Kevin HL, Baldwin GS, Hong H (2010) P21-activated kinase 1 stimulates colon cancer cell growth and migration/invasion via ERK- and AKT-dependent pathways. Biochim Biophys Acta 1803:1106–1113CrossRefPubMedGoogle Scholar
  40. 40.
    Balmanno K, Chell SD, Gillings AS, Hayat S, Cook SJ (2009) Intrinsic resistance to the MEK1/2 inhibitorAZD6244 (ARRY-142886) is associated with weak ERK1/2 signalling and/or strong PI3K signalling in colorectal cancer cell lines. Int J Cancer 125:2332–2341CrossRefPubMedGoogle Scholar
  41. 41.
    Wee S, Jagani Z, Xiang KX, Loo A, Dorsch M, Yao YM, Sellers WR, Lengauer C, Stegmeier F (2009) PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res 69:4286–4293CrossRefPubMedGoogle Scholar
  42. 42.
    Almeida M, Han L, Bellido T, Manolagas SC, Kousteni S (2005) Wnt proteins prevent apoptosis of both uncommitted osteoblast progenitors and differentiated osteoblasts by beta-catenin-dependent and -independent signaling cascades involving Src/ERK and phosphatidylinositol 3-kinase/AKT. J Biol Chem 280:41342–41351CrossRefPubMedGoogle Scholar
  43. 43.
    Mishra R (2010) Glycogen synthase kinase 3 beta: can it be a target for oral cancer. Mol Cancer 9:144PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Soumya C. Iyer
    • 1
  • Ashidha Gopal
    • 1
  • Devaraj Halagowder
    • 1
    Email author
  1. 1.Unit of Biochemistry, Department of Zoology, School of Life SciencesUniversity of MadrasChennaiIndia

Personalised recommendations