Advertisement

Molecular and Cellular Biochemistry

, Volume 405, Issue 1–2, pp 135–148 | Cite as

Activation of GPR30 inhibits cardiac fibroblast proliferation

  • Hao Wang
  • Zhuo Zhao
  • Marina Lin
  • Leanne Groban
Article

Abstract

The incidence of left ventricular diastolic dysfunction significantly increases in postmenopausal women suggesting the association between estrogen loss and diastolic dysfunction. The in vivo activation of G protein-coupled estrogen receptor (GPR30) attenuates the adverse effects of estrogen loss on cardiac fibrosis and diastolic dysfunction in mRen2.Lewis rats. This study was designed to address the effects of GPR30 on cardiac fibroblast proliferation in rats. The expression of GPR30 in cardiac fibroblasts isolated from adult Sprague–Dawley rats was confirmed by RT-PCR, Western blot analysis, and immunofluorescence staining. Results from BrdU incorporation assays, cell counting, carboxyfluorescein diacetate succinimidyl ester labeling in conjunction with flow cytometry, and Ki-67 staining showed that treatment with G1, a specific agonist of GPR30, inhibited cardiac fibroblast proliferation in a dose-dependent manner, which was associated with decreases in CDK1 and cyclin B1 protein expressions. In the GPR30-KO cells, BrdU incorporation, and CDK1 and cyclin B1 expressions significantly increased when compared to GPR30-intact cells. G1 had no effect on BrdU incorporation, CDK1 and cyclin B1 mRNA levels in GPR30-KO cells. In vivo studies showed increases in CDK1 and cyclin B1 mRNA levels, Ki-67-positive cells, and the immunohistochemistry staining of vimentin, a fibroblast marker, in the left ventricles from ovariectomized mRen2.Lewis rats versus hearts from ovary-intact littermates; 2 weeks of G1 treatment attenuated these adverse effects of estrogen loss. This study demonstrates that GPR30 is expressed in rat cardiac fibroblasts, and activation of GPR30 limits proliferation of these cells likely via suppression of the cell cycle proteins, cyclin B1, and CDK1.

Keywords

Estrogen Fibroblast GPR30 Heart Proliferation 

Notes

Acknowledgments

This work was funded in whole or part by National Institutes of Health Grants AG-042758 (to L. Groban), AG-033727 (to L. Groban), Doctoral Research Grant of Shandong Province BS2010YY005 (to Z. Zhao), and National Natural Science Foundation of China Grant 81270175 (to Z. Zhao). The funding sources had no involvement in the study design, in the collection, analysis, and interpretation of the data, nor in the writing of the report and decision to submit.

Conflict of interests

There are no conflicts of interest that could be perceived as prejudicing the impartiality of the research reported.

Supplementary material

11010_2015_2405_MOESM1_ESM.tiff (662 kb)
(TIF 662 kb)
11010_2015_2405_MOESM2_ESM.tiff (468 kb)
(TIF 468 kb)
11010_2015_2405_MOESM3_ESM.tiff (424 kb)
(TIF 424 kb)
11010_2015_2405_MOESM4_ESM.doc (24 kb)
(DOC 24 kb)

References

  1. 1.
    Correa de Sa DD, Hodge DO, Slusser JP, Redfield MM, Simari RD, Burnett JC, Chen HH (2010) Progression of preclinical diastolic dysfunction to the development of symptoms. Heart 96:528–532CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Aljaroudi W, Alraies MC, Halley C, Rodriguez L, Grimm RA, Thomas JD, Jaber WA (2012) Impact of progression of diastolic dysfunction on mortality in patients with normal ejection fraction. Circulation 125:782–788CrossRefPubMedGoogle Scholar
  3. 3.
    Kane GC, Karon BL, Mahoney DW, Redfield MM, Roger VL, Burnett JC Jr, Jacobsen SJ, Rodeheffer RJ (2011) Progression of left ventricular diastolic dysfunction and risk of heart failure. JAMA 306:856–863CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Agabiti-Rosei E, Muiesan ML (2002) Left ventricular hypertrophy and heart failure in women. J Hypertens Suppl 20:S34–S38PubMedGoogle Scholar
  5. 5.
    Oberman A, Prineas RJ, Larson JC, LaCroix A, Lasser NL (2006) Prevalence and determinants of electrocardiographic left ventricular hypertrophy among a multiethnic population of postmenopausal women (The Women’s Health Initiative). Am J Cardiol 97:512–519PubMedGoogle Scholar
  6. 6.
    Cheng S, Xanthakis V, Sullivan LM, Lieb W, Massaro J, Aragam J, Benjamin EJ, Vasan RS (2010) Correlates of echocardiographic indices of cardiac remodeling over the adult life course: longitudinal observations from the Framingham Heart Study. Circulation 122:570–578CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC et al (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA 288:321–333PubMedGoogle Scholar
  8. 8.
    Hulley S, Grady D, Bush T, Furberg C, Herrington D, Riggs B, Vittinghoff E (1998) Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group. JAMA 280:605–613CrossRefPubMedGoogle Scholar
  9. 9.
    Filardo E, Quinn J, Pang Y, Graeber C, Shaw S, Dong J, Thomas P (2007) Activation of the novel estrogen receptor G protein-coupled receptor 30 (GPR30) at the plasma membrane. Endocrinology 148:3236–3245CrossRefPubMedGoogle Scholar
  10. 10.
    Revankar CM, Mitchell HD, Field AS, Burai R, Corona C, Ramesh C, Sklar LA, Arterburn JB, Prossnitz ER (2007) Synthetic estrogen derivatives demonstrate the functionality of intracellular GPR30. ACS Chem Biol 2:536–544PubMedGoogle Scholar
  11. 11.
    Wang H, Jessup JA, Lin MS, Chagas C, Lindsey SH, Groban L (2012) Activation of GPR30 attenuates diastolic dysfunction and left ventricle remodelling in oophorectomized mRen2.Lewis rats. Cardiovasc Res 94:96–104PubMedCentralPubMedGoogle Scholar
  12. 12.
    Teng J, Wang ZY, Prossnitz ER, Bjorling DE (2008) The G protein-coupled receptor GPR30 inhibits human urothelial cell proliferation. Endocrinology 149:4024–4034CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Chan QK, Lam HM, Ng CF, Lee AY, Chan ES, Ng HK, Ho SM, Lau KM (2010) Activation of GPR30 inhibits the growth of prostate cancer cells through sustained activation of Erk1/2, c-jun/c-fos-dependent upregulation of p21, and induction of G(2) cell-cycle arrest. Cell Death Differ 17:1511–1523PubMedCentralPubMedGoogle Scholar
  14. 14.
    Vivacqua A, Bonofiglio D, Albanito L, Madeo A, Rago V, Carpino A, Musti AM, Picard D, Andò S, Maggiolini M (2006) 17beta-estradiol, genistein, and 4-hydroxytamoxifen induce the proliferation of thyroid cancer cells through the g protein-coupled receptor GPR30. Mol Pharmacol 70:1414–1423PubMedGoogle Scholar
  15. 15.
    Lin BC, Suzawa M, Blind RD, Tobias SC, Bulun SE, Scanlan TS, Ingraham HA (2009) Stimulating the GPR30 estrogen receptor with a novel tamoxifen analogue activates SF-1 and promotes endometrial cell proliferation. Cancer Res 69:5415–5423PubMedCentralPubMedGoogle Scholar
  16. 16.
    Albanito L, Madeo A, Lappano R, Vivacqua A, Rago V, Carpino A, Oprea TI, Prossnitz ER, Musti AM, Andò S et al (2007) G protein-coupled receptor 30 (GPR30) mediates gene expression changes and growth response to 17beta-estradiol and selective GPR30 ligand G1 in ovarian cancer cells. Cancer Res 67:1859–1866PubMedGoogle Scholar
  17. 17.
    Albanito L, Sisci D, Aquila S, Brunelli E, Vivacqua A, Madeo A, Lappano R, Randey DP, Ricard D, Mauro L et al (2008) Epidermal growth factor induces G protein-coupled receptor 30 expression in estrogen receptor-negative breast cancer cells. Endocrinology 149:3799–3808CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Haas E, Bhattacharya I, Brailoiu E, Damjanović M, Brailoiu GC, Gao X, Mueller-Guerre L, Marjon NA, Gut A, Minotti R et al (2009) Regulatory role of G protein-coupled estrogen receptor for vascular function and obesity. Circ Res 104:288–291PubMedCentralPubMedGoogle Scholar
  19. 19.
    Holm A, Baldetorp B, Olde B, Leeb-Lundberg LM, Nilsson BO (2011) The GPER1 agonist G-1 attenuates endothelial cell proliferation by inhibiting DNA synthesis and accumulating cells in the S and G2 phases of the cell cycle. J Vasc Res 48:327–335PubMedGoogle Scholar
  20. 20.
    Olde B, Leeb-Lundberg LM (2009) GPR30/GPER1: searching for a role in estrogen physiology. Trends Endocrinol Metab 20:409–416PubMedGoogle Scholar
  21. 21.
    Hazell GG, Yao ST, Roper JA, Prossnitz ER, O’Carroll AM, Lolait SJ (2009) Localisation of GPR30, a novel G protein-coupled oestrogen receptor, suggests multiple functions in rodent brain and peripheral tissues. J Endocrinol 202:223–236PubMedCentralPubMedGoogle Scholar
  22. 22.
    Deschamps AM, Murphy E (2009) Activation of a novel estrogen receptor, GPER, is cardioprotective in male and female rats. Am J Physiol Heart Circ Physiol 297:H1806–H1813PubMedCentralPubMedGoogle Scholar
  23. 23.
    Bopassa JC, Eghbali M, Toro L, Stefani E (2010) A novel estrogen receptor GPER inhibits mitochondria permeability transition pore opening and protects the heart against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 298:H16–H23PubMedCentralPubMedGoogle Scholar
  24. 24.
    Filice E, Recchia AG, Pellegrino D, Angelone T, Maggiolini M, Cerra MC (2009) A new membrane G protein-coupled receptor (GPR30) is involved in the cardiac effects of 17beta-estradiol in the male rat. J Physiol Pharmacol 60:3–10PubMedGoogle Scholar
  25. 25.
    Weil BR, Manukyan MC, Herrmann JL, Wang Y, Abarbanell AM, Poynter JA, Meldrum DR (2010) Signaling via GPR30 protects the myocardium from ischemia/reperfusion injury. Surgery 148:436–443CrossRefPubMedGoogle Scholar
  26. 26.
    Jessup JA, Lindsey SH, Wang H, Chappell MC, Groban L (2010) Attenuation of salt-induced cardiac remodeling and diastolic dysfunction by the GPER agonist G1 in female mRen2.Lewis rats. PLoS ONE 5:e15433CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Zhao Z, Wang H, Jessup JA, Lindsey SH, Chappell MC, Groban L (2014) Role of estrogen in diastolic dysfunction. Am J Physiol Heart Circ Physiol 306:H628–H640PubMedCentralPubMedGoogle Scholar
  28. 28.
    Campbell SE, Katwa LC (1997) Angiotensin II stimulated expression of transforming growth factor-beta1 in cardiac fibroblasts and myofibroblasts. J Mol Cell Cardiol 29:1947–1958PubMedGoogle Scholar
  29. 29.
    Dubey RK, Gillespie DG, Jackson EK, Keller PJ (1998) 17Beta-estradiol, its metabolites, and progesterone inhibit cardiac fibroblast growth. Hypertension 31:522–528CrossRefPubMedGoogle Scholar
  30. 30.
    Lee AA, Dillmann WH, McCulloch AD, Villarreal FJ (1995) Angiotensin II stimulates the autocrine production of transforming growth factor-beta 1 in adult rat cardiac fibroblasts. J Mol Cell Cardiol 27:2347–2357PubMedGoogle Scholar
  31. 31.
    Lee HW, Eghbali-Webb M (1998) Estrogen enhances proliferative capacity of cardiac fibroblasts by estrogen receptor- and mitogen-activated protein kinase-dependent pathways. J Mol Cell Cardiol 30:1359–1368PubMedGoogle Scholar
  32. 32.
    Lindsey SH, Chappell MC (2011) Evidence that the G protein-coupled membrane receptor GPR30 contributes to the cardiovascular actions of estrogen. Gend Med 8:343–354PubMedCentralPubMedGoogle Scholar
  33. 33.
    Graham HK, Horn M, Trafford AW (2008) Extracellular matrix profiles in the progression to heart failure. European Young Physiologists Symposium Keynote Lecture-Bratislava 2007. Acta Physiol (Oxford) 194:3–21Google Scholar
  34. 34.
    Dai Q, Lin J, Craig T, Chou YM, Hinojosa-Laborde C, Lindsey ML (2008) Estrogen effects on MMP-13 and MMP-14 regulation of left ventricular mass in Dahl salt-induced hypertension. Gend Med 5:74–85PubMedGoogle Scholar
  35. 35.
    Iyer RP, Patterson NL, Fields GB, Lindsey ML (2012) The history of matrix metalloproteinases: milestones, myths, and misperceptions. Am J Physiol Heart Circ Physiol 303:H919–H930PubMedCentralPubMedGoogle Scholar
  36. 36.
    Santiago JJ, Dangerfield AL, Rattan SG, Bathe KL, Cunnington RH, Raizman JE, Bedosky KM, Freed DH, Kardami E, Dixon IM (2010) Cardiac fibroblast to myofibroblast differentiation in vivo and in vitro: expression of focal adhesion components in neonatal and adult rat ventricular myofibroblasts. Dev Dyn 239:1573–1584PubMedGoogle Scholar
  37. 37.
    Bologa CG, Revankar CM, Young SM, Edwards BS, Arterburn JB, Kiselyov AS, Parker MA, Tkachenko SE, Savchuck MP, Sklar LA et al (2006) Virtual and biomolecular screening converge on a selective agonist for GPR30. Nat Chem Biol 2:207–212PubMedGoogle Scholar
  38. 38.
    Blasko E, Haskell CA, Leung S, Gualtieri G, Halks-Miller M, Mahmoudi M, Dennis MK, Prossnitz ER, Karpus WJ, Horuk R (2009) Beneficial role of the GPR30 agonist G1 in an animal model of multiple sclerosis. J Neuroimmunol 214:67–77PubMedCentralPubMedGoogle Scholar
  39. 39.
    Meyer MR, Field AS, Kanagy NL, Barton M, Prossnitz ER (2012) GPER regulates endothelin-dependent vascular tone and intracellular calcium. Life Sci 91:623–627PubMedCentralPubMedGoogle Scholar
  40. 40.
    Watanabe T, Akishita M, He H, Miyahara Y, Nagano K, Nakaoka T, Yamashita N, Kozaki K, Ouchi Y (2003) 17 beta-estradiol inhibits cardiac fibroblast growth through both subtypes of estrogen receptor. Biochem Biophys Res Commun 311:454–459PubMedGoogle Scholar
  41. 41.
    Fan D, Takawale A, Lee J, Kassiri Z (2012) Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair 5:15PubMedCentralPubMedGoogle Scholar
  42. 42.
    Iwasaki T, Mukasa K, Yoneda M, Ito S, Yamada Y, Mori Y, Fujisawa N, Fujisawa T, Wada K, Sekihara H et al (2005) Marked attenuation of production of collagen type I from cardiac fibroblasts by dehydroepiandrosterone. Am J Physiol Endocrinol Metab 288:E1222–E1228PubMedGoogle Scholar
  43. 43.
    Mukherjee D, Sen S (1990) Collagen phenotypes during development and regression of myocardial hypertrophy in spontaneously hypertensive rats. Circ Res 67:1474–1480PubMedGoogle Scholar
  44. 44.
    Xu Y, Arenas IA, Armstrong SJ, Davidge ST (2003) Estrogen modulation of left ventricular remodeling in the aged heart. Cardiovasc Res 57:388–394PubMedGoogle Scholar
  45. 45.
    Yang X, Chen B, Liu T, Chen X (2014) Reversal of myofibroblast differentiation: a review. Eur J Pharmacol 734:83–90PubMedGoogle Scholar
  46. 46.
    Delbeck M, Golz S, Vonk R, Janssen W, Hucho T, Isensee J, Schäfer S, Otto C (2011) Impaired left-ventricular cardiac function in male GPR30-deficient mice. Mol Med Rep 4:37–40PubMedGoogle Scholar
  47. 47.
    Griffin M, Lee HW, Zhao L, Eghbali-Webb M (2000) Gender-related differences in proliferative response of cardiac fibroblasts to hypoxia: effects of estrogen. Mol Cell Biochem 215:21–30PubMedGoogle Scholar
  48. 48.
    Ginelli P, Bella JN (2012) Treatment of diastolic dysfunction in hypertension. Nutr Metab Cardiovasc Dis 22:613–618PubMedGoogle Scholar
  49. 49.
    Manson JE (2014) Current recommendations: what is the clinician to do? Fertil Steril 101:916–921PubMedGoogle Scholar
  50. 50.
    Howard BV, Rossouw JE (2013) Estrogens and cardiovascular disease risk revisited: the Women’s Health Initiative. Curr Opin Lipidol 24:493–499PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Hao Wang
    • 1
    • 2
  • Zhuo Zhao
    • 1
    • 3
  • Marina Lin
    • 1
  • Leanne Groban
    • 1
    • 2
    • 4
    • 5
    • 6
  1. 1.Department of AnesthesiologyWake Forest School of Medicine, Medical Center BoulevardWinston-SalemUSA
  2. 2.Department of Internal Medicine-Molecular MedicineWake Forest School of Medicine, Medical Center BoulevardWinston-SalemUSA
  3. 3.Department of CardiologyJinan Central Hospital, Affiliated with Shandong UniversityJinanChina
  4. 4.The Hypertension and Vascular Research CenterWake Forest School of Medicine, Medical Center BoulevardWinston-SalemUSA
  5. 5.Women’s Health Center of ExcellenceWake Forest School of Medicine, Medical Center BoulevardWinston-SalemUSA
  6. 6.The Sticht Center on AgingWake Forest School of Medicine, Medical Center BoulevardWinston-SalemUSA

Personalised recommendations