Advertisement

Molecular and Cellular Biochemistry

, Volume 399, Issue 1–2, pp 27–37 | Cite as

Transcriptional and antioxidative responses to endogenous polyunsaturated fatty acid accumulation in yeast

  • Luka Andrisic
  • Emma J. Collinson
  • Oksana Tehlivets
  • Eleonora Perak
  • Tomislav Zarkovic
  • Ian W. Dawes
  • Neven Zarkovic
  • Ana Cipak GasparovicEmail author
Article

Abstract

Pathophysiology of polyunsaturated fatty acids (PUFAs) is associated with aberrant lipid and oxygen metabolism. In particular, under oxidative stress, PUFAs are prone to autocatalytic degradation via peroxidation, leading to formation of reactive aldehydes with numerous potentially harmful effects. However, the pathological and compensatory mechanisms induced by lipid peroxidation are very complex and not sufficiently understood. In our study, we have used yeast capable of endogenous PUFA synthesis in order to understand the effects triggered by PUFA accumulation on cellular physiology of a eukaryotic organism. The mechanisms induced by PUFA accumulation in S. cerevisiae expressing Hevea brasiliensis Δ12-fatty acid desaturase include down-regulation of components of electron transport chain in mitochondria as well as up-regulation of pentose-phosphate pathway and fatty acid β-oxidation at the transcriptional level. Interestingly, while no changes were observed at the transcriptional level, activities of two important enzymatic antioxidants, catalase and glutathione-S-transferase, were altered in response to PUFA accumulation. Increased intracellular glutathione levels further suggest an endogenous oxidative stress and activation of antioxidative defense mechanisms under conditions of PUFA accumulation. Finally, our data suggest that PUFA in cell membrane causes metabolic changes which in turn lead to adaptation to endogenous oxidative stress.

Keywords

PUFA Desaturase ROS Fatty acid β-oxidation Catalase 

Notes

Conflict of interest

All authors declare no potential conflict of interest.

Supplementary material

11010_2014_2229_MOESM1_ESM.docx (37 kb)
Supplementary material 1 (DOCX 37 kb)
11010_2014_2229_MOESM2_ESM.docx (55 kb)
Supplementary material 2 (DOCX 55 kb)

References

  1. 1.
    Das UN (2006) Essential fatty acids: biochemistry, physiology and pathology. Biotechnol J 1:420–439. doi: 10.1002/biot.200600012 PubMedCrossRefGoogle Scholar
  2. 2.
    Stulnig TM (2003) Immunomodulation by polyunsaturated fatty acids: mechanisms and effects. Int Arch Allergy Immunol 132:310–321. doi: 10.1159/000074898 PubMedCrossRefGoogle Scholar
  3. 3.
    Simopoulos AP (1999) Essential fatty acids in health and chronic disease. Am J Clin Nutr 70:560–569Google Scholar
  4. 4.
    Siddiqui RA, Shaikh SR, Sech LA et al (2004) Omega 3-fatty acids: health benefits and cellular mechanisms of action. Mini Rev Med Chem 4:859–871. doi: 10.2174/1389557043403431 PubMedCrossRefGoogle Scholar
  5. 5.
    Williams CD, Whitley BM, Hoyo C et al (2011) A high ratio of dietary n-6/n-3 polyunsaturated fatty acids is associated with increased risk of prostate cancer. Nutr Res 31:1–8. doi: 10.1016/j.nutres.2011.01.002 PubMedCrossRefGoogle Scholar
  6. 6.
    Simopoulos AP (2002) Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 21:495–505. doi: 10.1080/07315724.2002.10719248 PubMedCrossRefGoogle Scholar
  7. 7.
    Shaikh SR, Edidin M (2006) Polyunsaturated fatty acids, membrane organization, T cells, and antigen presentation. Am J Clin Nutr 84:1277–1289PubMedGoogle Scholar
  8. 8.
    Berquin IM, Min Y, Wu R et al (2007) Modulation of prostate cancer genetic risk by omega-3 and omega-6 fatty acids. J Clin Invest 117:1866–1875. doi: 10.1172/JCI31494 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Berquin IM, Edwards IJ, Kridel SJ, Chen YQ (2011) Polyunsaturated fatty acid metabolism in prostate cancer. Cancer Metastasis Rev 30:295–309. doi: 10.1007/s10555-011-9299-7 PubMedCrossRefGoogle Scholar
  10. 10.
    Gu Z, Suburu J, Chen H, Chen YQ (2013) Mechanisms of omega-3 polyunsaturated fatty acids in prostate cancer prevention. Biomed Res Int 2013:824563. doi: 10.1155/2013/824563 PubMedCentralPubMedGoogle Scholar
  11. 11.
    Zarkovic N (2003) 4-Hydroxynonenal as a bioactive marker of pathophysiological processes. Mol Asp Med 24:281–291. doi: 10.1016/S0098-2997(03)00023-2 CrossRefGoogle Scholar
  12. 12.
    Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128. doi: 10.1016/0891-5849(91)90192-6 PubMedCrossRefGoogle Scholar
  13. 13.
    Jaganjac M (2010) Possible involvement of granulocyte oxidative burst in Nrf2 signaling in cancer. Indian J Med Res 131:609–616PubMedGoogle Scholar
  14. 14.
    Jaganjac M, Čačev T, Čipak A et al (2012) Even stressed cells are individuals: second messengers of free radicals in pathophysiology of cancer. Croat Med J 53:304–309. doi: 10.3325/cmj.2012.53.304 PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Ahn J, Park IS, Lee KS et al (2001) Fatty acid patterns in gastric mucosa of stomach cancer patients. Yonsei Med J 42:220–226PubMedCrossRefGoogle Scholar
  16. 16.
    Juric-Sekhar G, Zarkovic K, Waeg G et al (2003) Distribution of 4-hydroxynonenal-protein conjugates as a marker of lipid peroxidation and parameter of malignancy in astrocytic and ependymal tumors of the brain. Tumori 95:762–768Google Scholar
  17. 17.
    Shim YJ, Choi KY, Lee WC et al (2005) Phospholipid fatty acid patterns in the mucosa of human colorectal adenomas and carcinomas. Nutr Res 25:261–269. doi: 10.1016/j.nutres.2004.12.007 CrossRefGoogle Scholar
  18. 18.
    Marquez-Quiñones A, Cipak A, Zarkovic K et al (2010) HNE-protein adducts formation in different pre-carcinogenic stages of hepatitis in LEC rats. Free Radic Res 44:119–127. doi: 10.3109/10715760903338071 PubMedCrossRefGoogle Scholar
  19. 19.
    Kuhajda FP (2006) Fatty acid synthase and cancer: new application of an old pathway. Cancer Res 66:5977–5980. doi: 10.1158/0008-5472.CAN-05-4673 PubMedCrossRefGoogle Scholar
  20. 20.
    Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7:763–777. doi: 10.1038/nrc2222 PubMedCrossRefGoogle Scholar
  21. 21.
    Swinnen JV, Van Veldhoven PP, Timmermans L et al (2003) Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochem Biophys Res Commun 302:898–903. doi: 10.1016/S0006-291X(03)00265-1 PubMedCrossRefGoogle Scholar
  22. 22.
    Rysman E, Brusselmans K, Scheys K et al (2010) De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res 70:8117–8126. doi: 10.1158/0008-5472.CAN-09-3871 PubMedCrossRefGoogle Scholar
  23. 23.
    Gyorfy Z, Benko S, Kusz E, Maresca B, Vigh ED L (1997) Highly increased TNF sensitivity of tumor cells expressing the yeast Δ9-desaturase gene. Biochem Biophys Res Commun 241:465–470. doi: 10.1006/bbrc.1997.7835 PubMedCrossRefGoogle Scholar
  24. 24.
    Lin S-T, Chou H-C, Chen Y-W, Chan H-L (2013) Redox-proteomic analysis of doxorubicin-induced altered thiol activity in cardiomyocytes. Mol BioSyst 9:447–456. doi: 10.1039/c2mb25367d PubMedCrossRefGoogle Scholar
  25. 25.
    Diaz-Ruiz R, Uribe-Carvajal S, Devin A, Rigoulet M (2009) Tumor cell energy metabolism and its common features with yeast metabolism. Biochim Biophys Acta 1796:252–265. doi: 10.1016/j.bbcan.2009.07.003 PubMedGoogle Scholar
  26. 26.
    Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033. doi: 10.1126/science.1160809 PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Kohlwein SD (2010) Obese and anorexic yeasts: experimental models to understand the metabolic syndrome and lipotoxicity. Biochim Biophys Acta 1801:222–229. doi: 10.1016/j.bbalip.2009.12.016 PubMedCrossRefGoogle Scholar
  28. 28.
    Martin CE, Oh C-S, Jiang Y (2007) Regulation of long chain unsaturated fatty acid synthesis in yeast. Biochim Biophys Acta 1771:271–285. doi: 10.1016/j.bbalip.2006.06.010 PubMedCrossRefGoogle Scholar
  29. 29.
    Natter K, Kohlwein SD (2013) Yeast and cancer cells—common principles in lipid metabolism. Biochim Biophys Acta 1831:314–326. doi: 10.1016/j.bbalip.2012.09.003 PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Stukey JE, McDonough VM, Martin CE (1989) Isolation and characterization of OLE1, a gene affecting fatty acid desaturation from Saccharomyces cerevisiae. J Biol Chem 264:16537–16544PubMedGoogle Scholar
  31. 31.
    Cipak A, Hasslacher M, Tehlivets O et al (2006) Saccharomyces cerevisiae strain expressing a plant fatty acid desaturase produces polyunsaturated fatty acids and is susceptible to oxidative stress induced by lipid peroxidation. Free Radic Biol Med 40:897–906. doi: 10.1016/j.freeradbiomed.2005.10.039 PubMedCrossRefGoogle Scholar
  32. 32.
    Cipak A, Jaganjac M, Tehlivets O et al (2008) Adaptation to oxidative stress induced by polyunsaturated fatty acids in yeast. Biochim Biophys Acta 1781:283–287. doi: 10.1016/j.bbalip.2008.03.010 PubMedCrossRefGoogle Scholar
  33. 33.
    Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168. doi: 10.1271/bbb1961.48.341 PubMedCentralPubMedGoogle Scholar
  34. 34.
    Alic N, Felder T, Temple MD et al (2004) Genome-wide transcriptional responses to a lipid hydroperoxide: adaptation occurs without induction of oxidant defenses. Free Radic Biol Med 37:23–35. doi: 10.1016/j.freeradbiomed.2004.04.014 PubMedCrossRefGoogle Scholar
  35. 35.
    Robinson MD, Grigull J, Mohammad N, Hughes TR (2002) FunSpec: a web-based cluster interpreter for yeast. BMC Bioinformatics 3:35–39. doi: 10.1186/1471-2105-3-35 PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Chen X, Zhong Z, Xu Z et al (2010) 2′,7′-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: forty years of application and controversy. Free Radic Res 44:587–604. doi: 10.3109/10715761003709802 PubMedCrossRefGoogle Scholar
  37. 37.
    Poljak-Blazi M, Jaganjac M, Sabol I et al (2011) Effect of ferric ions on reactive oxygen species formation, cervical cancer cell lines growth and E6/E7 oncogene expression. Toxicol In Vitro 25:160–166. doi: 10.1016/j.tiv.2010.10.013 PubMedCrossRefGoogle Scholar
  38. 38.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3 PubMedCrossRefGoogle Scholar
  39. 39.
    Góth L (1991) A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 196:143–151. doi: 10.1016/0009-8981(91)90067-M PubMedCrossRefGoogle Scholar
  40. 40.
    Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27:502–522. doi: 10.1016/0003-2697(69)90064-5 PubMedCrossRefGoogle Scholar
  41. 41.
    Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139PubMedGoogle Scholar
  42. 42.
    Cooper CE, Nicholls P, Freedman JA (1991) Cytochrome c oxidase: structure, function, and membrane topology of the polypeptide subunits. Biochem Cell Biol 69:586–607. doi: 10.1139/o91-089 PubMedCrossRefGoogle Scholar
  43. 43.
    Evans MV, Turton HE, Grant CM, Dawes IW (1998) Toxicity of linoleic acid hydroperoxide to Saccharomyces cerevisiae: involvement of a respiration-related process for maximal sensitivity and adaptive response. J Bacteriol 180:483–490PubMedCentralPubMedGoogle Scholar
  44. 44.
    Ruenwai R, Neiss A, Laoteng K et al (2011) Heterologous production of polyunsaturated fatty acids in Saccharomyces cerevisiae causes a global transcriptional response resulting in reduced proteasomal activity and increased oxidative stress. Biotechnol J 6:343–356. doi: 10.1002/biot.201000316 PubMedCrossRefGoogle Scholar
  45. 45.
    Cabiscol E, Bellí G, Tamarit J et al (2002) Mitochondrial Hsp60, resistance to oxidative stress, and the labile iron pool are closely connected in Saccharomyces cerevisiae. J Biol Chem 277:44531–44538. doi: 10.1074/jbc.M206525200 PubMedCrossRefGoogle Scholar
  46. 46.
    Hiltunen JK, Mursula AM, Rottensteiner H et al (2003) The biochemistry of peroxisomal -oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 27:35–64. doi: 10.1016/S0168-6445(03)00017-2 PubMedCrossRefGoogle Scholar
  47. 47.
    Gurvitz A, Rottensteiner H, Kilpeläinen SH et al (1997) The Saccharomyces cerevisiae peroxisomal 2,4-dienoyl-CoA reductase is encoded by the oleate-inducible gene SPS19. J Biol Chem 272:22140–22147. doi: 10.1074/jbc.272.35.22140 PubMedCrossRefGoogle Scholar
  48. 48.
    Marchesini S, Poirier Y (2003) Futile cycling of intermediates of fatty acid biosynthesis toward peroxisomal beta-oxidation in Saccharomyces cerevisiae. J Biol Chem 278:32596–32601. doi: 10.1074/jbc.M305574200 PubMedCrossRefGoogle Scholar
  49. 49.
    Binns D, Januszewski T, Chen Y et al (2006) An intimate collaboration between peroxisomes and lipid bodies. J Cell Biol 173:719–731. doi: 10.1083/jcb.200511125 PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Lockshon D, Surface LE, Kerr EO et al (2007) The sensitivity of yeast mutants to oleic acid implicates the peroxisome and other processes in membrane function. Genetics 175:77–91. doi: 10.1534/genetics.106.064428 PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Franken J, Kroppenstedt S, Swiegers JH, Bauer FF (2008) Carnitine and carnitine acetyltransferases in the yeast Saccharomyces cerevisiae: a role for carnitine in stress protection. Curr Genet 53:347–360. doi: 10.1007/s00294-008-0191-0 PubMedCrossRefGoogle Scholar
  52. 52.
    Minard KI, McAlister-Henn L (2001) Antioxidant function of cytosolic sources of NADPH in yeast. Free Radic Biol Med 31:832–843. doi: 10.1016/S0891-5849(01)00666-9 PubMedCrossRefGoogle Scholar
  53. 53.
    Matsushika A, Goshima T, Fujii T et al (2012) Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae. Enzyme Microb Technol 51:16–25. doi: 10.1016/j.enzmictec.2012.03.008 PubMedCrossRefGoogle Scholar
  54. 54.
    Kruger NJ, von Schaewen A (2003) The oxidative pentose phosphate pathway: structure and organisation. Curr Opin Plant Biol 6:236–246. doi: 10.1016/S1369-5266(03)00039-6 PubMedCrossRefGoogle Scholar
  55. 55.
    Riganti C, Gazzano E, Polimeni M et al (2012) The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med 53:421–436. doi: 10.1016/j.freeradbiomed.2012.05.006 PubMedCrossRefGoogle Scholar
  56. 56.
    Pereira MD, Eleutherio EC, Panek AD (2001) Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae. BMC Microbiol 1:11–20. doi: 10.1186/1471-2180-1-11 PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Singer MA, Lindquist S (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1:639–648. doi: 10.1016/S1097-2765(00)80064-7 PubMedCrossRefGoogle Scholar
  58. 58.
    Mahmud SA, Hirasawa T, Shimizu H (2010) Differential importance of trehalose accumulation in Saccharomyces cerevisiae in response to various environmental stresses. J Biosci Bioeng 109:262–266. doi: 10.1016/j.jbiosc.2009.08.500 PubMedCrossRefGoogle Scholar
  59. 59.
    Petrova VY, Drescher D, Kujumdzieva AV, Schmitt MJ (2004) Dual targeting of yeast catalase A to peroxisomes and mitochondria. Biochem J 380:393–400. doi: 10.1042/BJ20040042 PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Dickinson DA, Iles KE, Watanabe N et al (2002) 4-Hydroxynonenal induces glutamate cysteine ligase through JNK in HBE1 cells. Free Radic Biol Med 33:974–987. doi: 10.1016/S0891-5849(02)00991-7 PubMedCrossRefGoogle Scholar
  61. 61.
    Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16. doi: 10.1042/0264-6021:3600001 PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Poli G, Schaur RJ (2000) 4-Hydroxynonenal in the pathomechanisms of oxidative stress. IUBMB Life 50:315–321. doi: 10.1080/713803726 PubMedCrossRefGoogle Scholar
  63. 63.
    Choi JH, Lou W, Vancura A (1998) A novel membrane-bound glutathione S-transferase functions in the stationary phase of the yeast Saccharomyces cerevisiae. J Biol Chem 273:29915–29922. doi: 10.1074/jbc.273.45.29915 PubMedCrossRefGoogle Scholar
  64. 64.
    Collinson EJ, Grant CM (2003) Role of yeast glutaredoxins as glutathione S-transferases. J Biol Chem 278:22492–22497. doi: 10.1074/jbc.M301387200 PubMedCrossRefGoogle Scholar
  65. 65.
    Kohlwein SD, Veenhuis M, van der Klei IJ (2013) Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat–store’em up or burn ‘em down. Genetics 193:1–50. doi: 10.1534/genetics.112.143362 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Luka Andrisic
    • 1
  • Emma J. Collinson
    • 2
  • Oksana Tehlivets
    • 3
  • Eleonora Perak
    • 4
  • Tomislav Zarkovic
    • 5
  • Ian W. Dawes
    • 6
  • Neven Zarkovic
    • 1
  • Ana Cipak Gasparovic
    • 1
    Email author
  1. 1.Rudjer Boskovic InstituteZagrebCroatia
  2. 2.Discipline of Anatomy and Histology, School of Medical SciencesUniversity of SydneySydneyAustralia
  3. 3.Institute of Molecular Biosciences, Lipidomics Research Center GrazUniversity of GrazGrazAustria
  4. 4.Veterinary InstituteZagrebCroatia
  5. 5.Molecular Biosciences Study Program on Bioinformatics/Zagrebacka bankaZagrebCroatia
  6. 6.School of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyAustralia

Personalised recommendations