Molecular and Cellular Biochemistry

, Volume 398, Issue 1–2, pp 207–215 | Cite as

Fluvastatin attenuated the effect of expression of β1 integrin in PAN-treated podocytes by inhibiting reactive oxygen species

  • Jia Liu
  • Bo ZhangEmail author
  • Yuping Chai
  • Yaguang Xu
  • Changying Xing
  • Xiaoyun Wang


It is well accepted that β1 integrin plays a key role in maintaining normal podocytes form and functions; however, its mechanism of the potential protective effect remains unclear. Furthermore, the investigation and understanding of the non-lipid-dependent renal protection of Statins in addition to well-known lipid-lowering effect may provide the therapeutic utility and ultimately improve clinical outcome for patients with renal diseases. In the present study, we investigated the effect and mechanism of fluvastatin (FLV) on the expression of β1 integrin in puromycin aminonucleoside (PAN)-treated podocytes in vitro. Cultured human podocytes were treated with PAN, and/or different concentrations of FLV (1 × 10−8–1 × 10−5 mol/l), superoxide dismutase (SOD), or H2O2, respectively. The expression of β1 integrin and reactive oxygen species (ROS) in human podocytes under each experimental condition was evaluated by western blot, RT-PCR, and 2′7′-dichlorofluorescein 3′6′-diacetate, respectively. The viability of podocytes was also assessed by MTT colorimetry in the present study. The expression of β1 integrin was significantly decreased, and the synthesis of ROS was significantly increased in podocytes following either PAN or H2O2 treatment (p < 0.05). The up-regulation of β1 integrin and down-regulation of ROS were also observed in PAN-treated podocytes following lower concentrations of FLV or SOD treatment (p < 0.05, respectively). The cytotoxicity data derived from MTT assay revealed that lower podocyte viability was found in the presence of higher concentrations of FLV, PAN, or H2O2. Lower concentration of FLV or SOD can protect podocytes from being impaired by PAN treatment. FLV attenuated the podocyte injury induced by PAN and increased the production of β1 integrin in human podocytes in vitro. This underlying mechanism of FLV may be through inhibiting the activity of ROS in human podocytes.


β1 integrin Fluvastatin Podocyte Puromycin aminonucleoside Reactive oxygen species 



This work was supported by PAPD and Grants from the National Natural Science Foundation of China (81100512/H0510, 81170660/H0509, 81370815/H0509)

Conflict of interest

There is no conflict of interest to declare.


  1. 1.
    Pavenstädt H, Kriz W, Kretzler M (2003) Cell biology of the glomerular podocyte. Physiol Rev 83(1):253–307PubMedGoogle Scholar
  2. 2.
    Kojima K, Davidovits A, Poczewski H (2004) Podocyte flattening and disorder of glomerular basement membrane are associated with splitting of dystroglycan-matrix interaction. J Am Soc Nephrol 15(8):2079–2089PubMedCrossRefGoogle Scholar
  3. 3.
    Korhonen M, Ylänne J, Laitinen L, Virtanen I (1990) Distribution of β1 and α3 integrins in human fetal and adult kidney. Lab Invest 62(5):616–625PubMedGoogle Scholar
  4. 4.
    Adler S (1992) Characterization of glomerular epithelial cell matrix receptors. Am J Pathol 141(3):571–578PubMedCentralPubMedGoogle Scholar
  5. 5.
    Kretzler M (2002) Regulation of adhesive interaction between podocytes and glomerular basement membrane. Microsc Res Tech 57(4):247–253PubMedCrossRefGoogle Scholar
  6. 6.
    Chen J, Gui D, Chen Y, Mou L, Liu Y, Huang J (2008) Astragaloside IV improves high glucose-induced podocyte adhesion dysfunction via α3β1 integrin up regulation and integrin-linked kinase inhibition. Biochem Pharmacol 76(6):796–804PubMedCrossRefGoogle Scholar
  7. 7.
    Dessapt C, Baradez MO, Hayward A, Deicas A, Thomas SM, Viberti G, Gnudi L (2009) Mechanical forces and TGFbeta1 reduce podocyte adhesion through alpha3beta1 integrin downregulation. Nephrol Dial Transplant 24(9):2645–2655PubMedCrossRefGoogle Scholar
  8. 8.
    Shibata S, Nagase M, Fujita T (2006) Fluvastatin ameliorates podocyte injury in proteinuric rats via modulation of excessive Rho signaling. J Am Soc Nephrol 17(3):754–764PubMedCrossRefGoogle Scholar
  9. 9.
    Saleem MA, O’Hare MJ, Reiser J, Coward RJ, Inward CD, Farren T, Xing CY, Ni L, Mathieson PW, Mundel P (2002) A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression. J Am Soc Nephrol 13(3):630–638PubMedGoogle Scholar
  10. 10.
    Wang R, Li J, Lyte K, Yashpal NK, Fellows F, Goodyer CG (2005) Role for beta1 integrin and its associated alpha3, alpha5, and alpha6 subunits in development of the human fetal pancreas. Diabetes 54(7):2080–2089PubMedCrossRefGoogle Scholar
  11. 11.
    Wang Hong, Jeoseph James A (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radical Biol Med 27(5–6):612–616CrossRefGoogle Scholar
  12. 12.
    Kriz W (2002) Podocyte is the major culprit accounting for the progression of chronic renal disease. Microsc Res Tech 57(4):189–195PubMedCrossRefGoogle Scholar
  13. 13.
    Pavenstädt H (2000) Roles of the podocyte in glomerular function. Am J Physiol 278(2):F173–F179Google Scholar
  14. 14.
    Kerjaschki D, Neale TJ (1996) Molecular mechanisms of glomerular injury in rat experimental membranous nephropathy (Heymann nephritis). J Am Soc Nephrol 7(12):2518–2526PubMedGoogle Scholar
  15. 15.
    Cybulsky AV, Carbonetto S, Huang Q, Mctavish AJ, Cyr MD (1992) Adhesion of rat glomerular epithelial cells to extracellular matrices: role of beta 1 integrins. Kidney Int 42(5):1099–1106PubMedCrossRefGoogle Scholar
  16. 16.
    Chen CA, Hwang JC, Guh JY, Chang JM, Lai YH, Chen HC (2006) Reduced podocyte expression of alpha3beta1 integrins and podocyte depletion in patients with primary focal segmental glomerulosclerosis and chronic PAN-treated rats. J Lab Clin Med 147:74–82PubMedCrossRefGoogle Scholar
  17. 17.
    Kreidberg JA, Donovan MJ, Goldstein SL, Rennke H, Shepherd K, Jones RC, Jaenisch R (1996) Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis. Development 122(11):3537–3547PubMedGoogle Scholar
  18. 18.
    Pozzi A et al (2008) β1 integrin expression by podocytes is required to maintain glomerular structural integrity. Developmental Biology 316:288–301PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Cai H (2005) Hydrogen peroxide regulation of endothelial function: origins, mechanisms, and consequences. Cardiovasc Res 68:26–36PubMedCrossRefGoogle Scholar
  20. 20.
    Houstis N, Rosen ED, Lander ES (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440:944–948PubMedCrossRefGoogle Scholar
  21. 21.
    Ricardo SD, Bertram JF, Ryan GB (1994) Antioxidants protect podocyte foot processes in puromycin aminonucleoside-treated rats. J Am Soc Nephrol 4(12):1974–1986PubMedGoogle Scholar
  22. 22.
    Neale TJ, Ullrich R, Ojha P, Poczewski H, Verhoeven AJ, Kerjaschki D (1993) Reactive oxygen species and neutrophil respiratory burst cytochrome b558 are produced by kidney glomerular cells in passive Heymann nephritis. Proc Natl Acad Sci USA 90:3645–3649PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Shah SV (1988) Evidence suggesting a role for hydroxyl radical in passive Heymann nephritis in rats. Am J Physiol 254(3 Pt 2):F337–F344PubMedGoogle Scholar
  24. 24.
    Binder CJ, Weiher H, Exner M, Kerjaschki D (1999) Glomerular overproduction of oxygen radicals in Mpv17 gene-inactivated mice causes podocyte foot process flattening and proteinuria: a model of steroid-resistant nephrosis sensitive to radical scavenger therapy. Am J Pathol 154:1067–1075PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Kojima K, Matsui K, Nagase M (2000) Protection of alpha3 integrin-mediated podocyte shape by superoxide dismutase in the puromycin aminonucleoside nephrosis rat. Am J Kidney Dis 35(6):1175–1185PubMedCrossRefGoogle Scholar
  26. 26.
    Ongini E, Impagnatiello F, Bonazzi A, Guzzetta M, Govoni M, Monopoli A, Del Soldato P, Ignarro LJ (2004) Nitric oxide (NO)-releasing statin derivatives, a class of drugs showing enhanced antiproliferative and antiinflammatory properties. Proc Natl Acad Sci USA 101(22):8497–8502PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Mason RP (2006) Molecular basis of differences among statins and a comparison with antioxidant vitamins. Am J Cardiol 98(11A):34–41CrossRefGoogle Scholar
  28. 28.
    Li X, Liu L, Tupper JC, Bannerman DD, Winn RK, Sebti SM, Hamilton AD, Harlan JM (2002) Inhibition of protein geranylgeranylation and RhoA/RhoA kinase pathway induces apoptosis in human endothelial cells. J Biol Chem 277(18):15309–15316PubMedCrossRefGoogle Scholar
  29. 29.
    Alexander Christian et al (2006) Statins inhibit hypoxia-induced endothelial proliferation by preventing calcium-induced ROS formation. Atherosclerosis 185(2):290–296CrossRefGoogle Scholar
  30. 30.
    Mason RP, Walter MF, Jacob RF (2004) Effects of HMG-CoA reductase inhibition of endothelial function: role of microdomains and oxidative stress. Circulation 109(21 Suppl 1):II34–II41PubMedGoogle Scholar
  31. 31.
    Xiaoniao CHEN et al (2010) Simvastatin combined with nifedipine enhances endothelial cell protection by inhibiting ROS generation and activating Akt phosphorylation. Acta Pharmacol Sin 31(7):813–820CrossRefGoogle Scholar
  32. 32.
    Thomas SR, Witting PK, Drummond GR (2008) Redox control of endothelial function and dysfunction: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 10(10):1713–1765PubMedCrossRefGoogle Scholar
  33. 33.
    Zhang Y, Wang H (2012) Integrin signalling and function in immune cells. Immunology 135(4):268–275PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Tong L, Tergaonkar V (2014) Rho protein GTPases and their interactions with NFκB: crossroads of inflammation and matrix biology. Biosci Rep 34(3):283–295CrossRefGoogle Scholar
  35. 35.
    Wang W, Wang Y, Long J, Wang J, Haudek SB, Overbeek P, Chang BH, Schumacker PT, Danesh FR (2012) Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab 15(2):186–200PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Smoyer WE, Ransom RF (2002) Hsp27 regulates podocyte cytoskeletal changes in an in vitro model of podocyte process retraction. FASEB J 16(3):315–326PubMedCrossRefGoogle Scholar
  37. 37.
    Whiteside CI, Cameron R, Munk S, Levy J (1993) Podocytic cytoskeletal disaggregation and basement-membrane detachment in puromycin aminonucleoside nephrosis. Am J Pathol 142(5):1641–1653PubMedCentralPubMedGoogle Scholar
  38. 38.
    Mundel P, Shankland SJ (2002) Podocyte biology and response to injury. J Am Soc Nephrol 13(12):3005–3015PubMedCrossRefGoogle Scholar
  39. 39.
    Van Aelst L, D’Souza-Schorey C (1997) Rho GTPases and signaling networks. Genes Dev 11(18):2295–2322PubMedCrossRefGoogle Scholar
  40. 40.
    Endlich N, Kress KR, Reiser J, Uttenweiler D, Kriz W, Mundel P, Endlich K (2001) Podocytes respond to mechanical stress in vitro. J Am Soc Nephrol 12(3):413–422PubMedGoogle Scholar
  41. 41.
    Tatara Y, Ohishi M, Yamamoto K, Shiota A, Hayashi N, Iwamoto Y, Takeda M, Takagi T, Katsuya T, Ogihara T, Rakugi H (2009) Macrophage inflammatory protein-1β induced cell adhesion with increased intracellular reactive oxygen species. J Mol Cell Cardiol 47(1):104–111PubMedCrossRefGoogle Scholar
  42. 42.
    Kawaguchi M, Yamada M, Wada H, Okigaki T (1996) Roles of active oxygen species in glomerular epithelial cell injury in vitro caused by puromycin aminonucleoside. Toxicology 72(3):329–340CrossRefGoogle Scholar
  43. 43.
    Xu SZ, Zhong W et al (2008) Fluvastatin reduces oxidative damage in human vascular endothelial cells by up regulating Bcl-2. J Thromb Haemost 6(4):692–700PubMedCrossRefGoogle Scholar
  44. 44.
    Maeda A, Yano T, Itoh Y, Kakumori M, Kubota T, Egashira N, Oishi R (2010) Down-regulation of RhoA is involved in the cytotoxic action of lipophilic statins in HepG2 cells. Atherosclerosis 208(1):112–118PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jia Liu
    • 1
  • Bo Zhang
    • 1
    Email author
  • Yuping Chai
    • 1
  • Yaguang Xu
    • 1
  • Changying Xing
    • 1
  • Xiaoyun Wang
    • 1
  1. 1.Department of Nephropathy, The First Affiliated Hospital of Nanjing Medical UniversityJiangsu Province HospitalNanjingChina

Personalised recommendations