Molecular and Cellular Biochemistry

, Volume 398, Issue 1–2, pp 147–156 | Cite as

Piperine inhibits IL-1β-induced IL-6 expression by suppressing p38 MAPK and STAT3 activation in gastric cancer cells

  • Yong Xia
  • Pham Ngoc Khoi
  • Hyun Joong Yoon
  • Sen Lian
  • Young Eun Joo
  • Kee Oh Chay
  • Kyung Keun Kim
  • Young Do Jung
Article

Abstract

Piperine, a kind of natural alkaloid found in peppers, has been reported to exhibit anti-oxidative and anti-tumor activities, both in vitro and in vivo. Interleukin-6 (IL-6) is an important cytokine that activates the signal transduction, promotes tumor cell metastasis, and induces malignancy, including in gastric cancer. However, the effects of piperine on IL-6 expression in gastric cancer cells have not yet been well defined. In this study, we investigated the effects of piperine on the IL-6 expression, and examined the underlying signaling pathways via RT-PCR, promoter studies and Western blotting in human gastric cancer TMK-1 cells. Our results showed that piperine inhibited interleukin-1β (IL-1β)–induced IL-6 expression in a dose-dependent manner. In addition, piperine also inhibited IL-6 promoter activity. Experiments with mitogen-activated protein kinase (MAPK) inhibitors and dominant negative mutant p38 MAPK indicated that p38 MAPK was essential for IL-6 expression in the TMK-1 cells. Additionally, signal transducer and activator of transcription 3 (STAT3) was also involved in the IL-1β-induced IL-6 expression in gastric cancer cells. Piperine inhibited IL-1β-induced p38 MAPK and STAT3 activation and, in turn, blocked the IL-1β-induced IL-6 expression. Furthermore, gastric cancer cells pretreated with IL-1β showed markedly enhanced invasiveness, which was partially abrogated by treatment with IL-6 siRNA, piperine, and inhibitors of p38 MAPK and STAT3. These results suggest that piperine may exert at least part of its anti-cancer effect by controlling IL-6 expression through the suppression of p38 MAPK and STAT3.

Keywords

Piperine IL-6 Gastric cancer p38MAPK STAT3 

References

  1. 1.
    Jemal A, Center MM, DeSantis C, Ward EM (2010) Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomark Prev 19:1893–1907CrossRefGoogle Scholar
  2. 2.
    Orditura M, Galizia G, Sforza V, Gambardella V, Fabozzi A, Laterza MM, Andreozzi F, Ventriglia J, Savastano B, Mabilia A (2014) Treatment of gastric cancer. World J Gastroenterol 20:1635–1649PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Ohshima H, Tatemichi M, Sawa T (2003) Chemical basis of inflammation-induced carcinogenesis. Arch Biochem Biophys 417:3–11PubMedCrossRefGoogle Scholar
  4. 4.
    Cheng T-Y, Wu M-S, Hua K-T, Kuo M-L, Lin M-T (2014) Cyr61/CTGF/Nov family proteins in gastric carcinogenesis. World J Gastroenterol 20:1694–1700PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Chung HW, Lim JB (2014) Role of the tumor microenvironment in the pathogenesis of gastric carcinoma. World J Gastroenterol 20:1667–1680PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Lin MT, Lin BR, Chang CC, Chu CY, Su HJ, Chen ST, Jeng YM, Kuo ML (2007) IL-6 induces AGS gastric cancer cell invasion via activation of the c-Src/RhoA/ROCK signaling pathway. Int J Cancer 120:2600–2608PubMedCrossRefGoogle Scholar
  7. 7.
    Garbers C, Hermanns HM, Schaper F, Muller-Newen G, Grotzinger J, Rose-John S, Scheller J (2012) Plasticity and cross-talk of interleukin 6-type cytokines. Cytokine Growth Factor Rev 23:85–97PubMedCrossRefGoogle Scholar
  8. 8.
    Guo Y, Xu F, Lu T, Duan Z, Zhang Z (2012) Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev 38:904–910PubMedCrossRefGoogle Scholar
  9. 9.
    Yin Y, Si X, Gao Y, Gao L, Wang J (2013) The nuclear factor-κB correlates with increased expression of interleukin-6 and promotes progression of gastric carcinoma. Oncol Rep 29:34–38PubMedCentralPubMedGoogle Scholar
  10. 10.
    Lee SA, Choi SR, Jang JS, Lee JH, Roh MH, Kim SO, Kim MC, Kim SJ, Jeong JS (2010) Expression of VEGF, EGFR, and IL-6 in gastric adenomas and adenocarcinomas by endoscopic submucosal dissection. Dig Dis Sci 55:1955–1963PubMedCrossRefGoogle Scholar
  11. 11.
    Ashizawa T, Okada R, Suzuki Y, Takagi M, Yamazaki T, Sumi T, Aoki T, Ohnuma S (2005) Clinical significance of interleukin-6 (IL-6) in the spread of gastric cancer: role of IL-6 as a prognostic factor. Gastric Cancer 8:124–131PubMedCrossRefGoogle Scholar
  12. 12.
    Wang Z, Si X, Xu A, Meng X, Gao S, Qi Y, Zhu L, Li T, Li W, Dong L (2013) Activation of STAT3 in human gastric cancer cells via interleukin (IL)-6-type cytokine signaling correlates with clinical implications. PLoS ONE 8:e75788PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Necula LG, Chivu-Economescu M, Stanciulescu EL, Bleotu C, Dima SO, Alexiu I, Dumitru A, Constantinescu G, Popescu I, Diaconu CC (2012) IL-6 and IL-11 as markers for tumor aggressiveness and prognosis in gastric adenocarcinoma patients without mutations in Gp130 subunits. J Gastrointest Liver Dis 21:23–29Google Scholar
  14. 14.
    Jackson CB, Judd LM, Menheniott TR, Kronborg I, Dow C, Yeomans ND, Boussioutas A, Robb L, Giraud AS (2007) Augmented gp130-mediated cytokine signalling accompanies human gastric cancer progression. J Pathol 213:140–151PubMedCrossRefGoogle Scholar
  15. 15.
    Apte RN, Dotan S, Elkabets M, White MR, Reich E, Carmi Y, Song X, Dvozkin T, Krelin Y, Voronov E (2006) The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metastasis Rev 25:387–408PubMedCrossRefGoogle Scholar
  16. 16.
    Cahill CM, Rogers JT (2008) Interleukin (IL) 1β induction of IL-6 is mediated by a novel phosphatidylinositol 3-kinase-dependent AKT/IκB kinase α pathway targeting activator protein-1. J Biol Chem 283:25900–25912PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Kandere-Grzybowska K, Kempuraj D, Cao J, Cetrulo CL, Theoharides TC (2006) Regulation of IL-1-induced selective IL-6 release from human mast cells and inhibition by quercetin. Br J Pharmacol 148:208–215PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Kim HG, Han EH, Jang W-S, Choi JH, Khanal T, Park BH, Tran TP, Chung YC, Jeong HG (2012) Piperine inhibits PMA-induced cyclooxygenase-2 expression through downregulating NF-κB, C/EBP and AP-1 signaling pathways in murine macrophages. Food Chem Toxicol 50:2342–2348PubMedCrossRefGoogle Scholar
  19. 19.
    Bae GS, Kim MS, Jeong J, Lee HY, Park KC, Koo BS, Kim BJ, Kim TH, Lee SH, Hwang SY et al (2011) Piperine ameliorates the severity of cerulein-induced acute pancreatitis by inhibiting the activation of mitogen activated protein kinases. Biochem Biophys Res Commun 410:382–388PubMedCrossRefGoogle Scholar
  20. 20.
    Lai LH, Fu QH, Liu Y, Jiang K, Guo QM, Chen QY, Yan B, Wang QQ, Shen JG (2012) Piperine suppresses tumor growth and metastasis in vitro and in vivo in a 4T1 murine breast cancer model. Acta Pharmacol Sin 33:523–530PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Ouyang DY, Zeng LH, Pan H, Xu LH, Wang Y, Liu KP, He XH (2013) Piperine inhibits the proliferation of human prostate cancer cells via induction of cell cycle arrest and autophagy. Food Chem Toxicol 60:424–430PubMedCrossRefGoogle Scholar
  22. 22.
    Ge B, Gram H, Di Padova F, Huang B, New L, Ulevitch RJ, Luo Y, Han J (2002) MAPKK-independent activation of p38alpha mediated by TAB 1-dependent autophosphorylation of p38alpha. Science 295:1291–1294PubMedCrossRefGoogle Scholar
  23. 23.
    Selvendiran K, Prince Vijeya Singh J, Sakthisekaran D (2006) In vivo effect of piperine on serum and tissue glycoprotein levels in benzo(a)pyrene induced lung carcinogenesis in Swiss albino mice. Pulm Pharmacol Ther 19:107–111PubMedCrossRefGoogle Scholar
  24. 24.
    Pradeep CR, Kuttan G (2004) Piperine is a potent inhibitor of nuclear factor-kappaB (NF-kappaB), c-Fos, CREB, ATF-2 and proinflammatory cytokine gene expression in B16F-10 melanoma cells. Int Immunopharmacol 4:1795–1803PubMedCrossRefGoogle Scholar
  25. 25.
    Hwang YP, Yun HJ, Kim HG, Han EH, Choi JH, Chung YC, Jeong HG (2011) Suppression of phorbol-12-myristate-13-acetate-induced tumor cell invasion by piperine via the inhibition of PKCalpha/ERK1/2-dependent matrix metalloproteinase-9 expression. Toxicol Lett 203:9–19PubMedCrossRefGoogle Scholar
  26. 26.
    Makhov P, Golovine K, Canter D, Kutikov A, Simhan J, Corlew MM, Uzzo RG, Kolenko VM (2012) Co-administration of piperine and docetaxel results in improved anti-tumor efficacy via inhibition of CYP3A4 activity. Prostate 72:661–667PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Pradeep C, Kuttan G (2004) Piperine is a potent inhibitor of nuclear factor-κB (NF-κB), c-Fos, CREB, ATF-2 and proinflammatory cytokine gene expression in B16F-10 melanoma cells. Int Immunopharmacol 4:1795–1803PubMedCrossRefGoogle Scholar
  28. 28.
    Kakarala M, Brenner DE, Korkaya H, Cheng C, Tazi K, Ginestier C, Liu S, Dontu G, Wicha MS (2010) Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res Treat 122:777–785PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Bae G-S, Kim M-S, Jung W-S, Seo S-W, Yun S-W, Kim SG, Park R-K, Kim E-C, Song H-J, Park S-J (2010) Inhibition of lipopolysaccharide-induced inflammatory responses by piperine. Eur J Pharmacol 642:154–162PubMedCrossRefGoogle Scholar
  30. 30.
    Kumar S, Singhal V, Roshan R, Sharma A, Rembhotkar GW, Ghosh B (2007) Piperine inhibits TNF-α induced adhesion of neutrophils to endothelial monolayer through suppression of NF-κB and IκB kinase activation. Eur J Pharmacol 575:177–186PubMedCrossRefGoogle Scholar
  31. 31.
    Łukaszewicz-Zajac M, Mroczko B, Szmitkowski M (2010) The role of interleukin-6 and C-reactive protein in gastric cancer. Pol Merkur Lek Organ Pol Towarz Lekarskiego 29:382–386Google Scholar
  32. 32.
    Huang S-P, Wu M-S, Shun C-T, Wang H-P, Lin M-T, Kuo M-L, Lin J-T (2004) Interleukin-6 increases vascular endothelial growth factor and angiogenesis in gastric carcinoma. J Biomed Sci 11:517–527PubMedCrossRefGoogle Scholar
  33. 33.
    Kim D-K, Oh SY, Kwon H-C, Lee S, Kwon KA, Kim BG, Kim S-G, Kim S-H, Jang JS, Kim MC (2009) Clinical significances of preoperative serum interleukin-6 and C-reactive protein level in operable gastric cancer. BMC Cancer 9:155PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng D, Yu H (2009) IL-17 can promote tumor growth through an IL-6–Stat3 signaling pathway. J Exp Med 206:1457–1464PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Kinoshita H, Hirata Y, Nakagawa H, Sakamoto K, Hayakawa Y, Takahashi R, Nakata W, Sakitani K, Serizawa T, Hikiba Y (2013) Interleukin-6 mediates epithelial–stromal interactions and promotes gastric tumorigenesis. PLoS ONE 8:e60914PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Lin MT, Lin BR, Chang CC, Chu CY, Su HJ, Chen ST, Jeng YM, Kuo ML (2007) IL-6 induces AGS gastric cancer cell invasion via activation of the c-Src/RhoA/ROCK signaling pathway. Int J Cancer 120:2600–2608PubMedCrossRefGoogle Scholar
  37. 37.
    Troost E, Hold GL, Smith MG, Chow WH, Rabkin CS, McColl KE, El-Omar EM (2003) The role of interleukin-1beta and other potential genetic markers as indicators of gastric cancer risk. Can J Gastroenterol 17 Suppl B:8B–12BPubMedGoogle Scholar
  38. 38.
    Tsuzaki M, Guyton G, Garrett W, Archambault J, Herzog W, Almekinders L, Bynum D, Yang X, Banes A (2003) IL-1β induces COX2, MMP-1,-3 and-13, ADAMTS-4, IL-1β and IL-6 in human tendon cells. J Orthop Res 21:256–264PubMedCrossRefGoogle Scholar
  39. 39.
    Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB J 9:726–735PubMedGoogle Scholar
  40. 40.
    Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911–1912PubMedCrossRefGoogle Scholar
  41. 41.
    Obata T, Brown GE, Yaffe MB (2000) MAP kinase pathways activated by stress: the p38 MAPK pathway. Crit Care Med 28:N67–N77PubMedCrossRefGoogle Scholar
  42. 42.
    Do MT, Kim HG, Choi JH, Khanal T, Park BH, Tran TP, Jeong TC, Jeong HG (2013) Antitumor efficacy of piperine in the treatment of human HER2-overexpressing breast cancer cells. Food Chem 141:2591–2599PubMedCrossRefGoogle Scholar
  43. 43.
    Craig R, Larkin A, Mingo AM, Thuerauf DJ, Andrews C, McDonough PM, Glembotski CC (2000) p38 MAPK and NF-kappa B collaborate to induce interleukin-6 gene expression and release. Evidence for a cytoprotective autocrine signaling pathway in a cardiac myocyte model system. J Biol Chem 275:23814–23824PubMedCrossRefGoogle Scholar
  44. 44.
    Patil C, Zhu X, Rossa C Jr, Kim YJ, Kirkwood KL (2004) p38 MAPK regulates IL-1β induced IL-6 expression through mRNA stability in osteoblasts. Immunol Invest 33:213–233PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Hideshima T, Akiyama M, Hayashi T, Richardson P, Schlossman R, Chauhan D, Anderson KC (2003) Targeting p38 MAPK inhibits multiple myeloma cell growth in the bone marrow milieu. Blood 101:703–705PubMedCrossRefGoogle Scholar
  46. 46.
    Baldassare JJ, Bi Y, Bellone CJ (1999) The role of p38 mitogen-activated protein kinase in IL-1β transcription. J Immunol 162:5367–5373PubMedGoogle Scholar
  47. 47.
    Petrella BL, Vincenti MP (2012) Interleukin-1β mediates metalloproteinase-dependent renal cell carcinoma tumor cell invasion through the activation of CCAAT enhancer binding protein β. Cancer Med 1:17–27PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Liu Y, Fuchs J, Li C, Lin J (2010) IL-6, a risk factor for hepatocellular carcinoma. Cell Cycle 9:3423–3427PubMedCrossRefGoogle Scholar
  49. 49.
    Hirano T, Ishihara K, Hibi M (2000) Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 19:2548–2556PubMedCrossRefGoogle Scholar
  50. 50.
    Mori T, Miyamoto T, Yoshida H, Asakawa M, Kawasumi M, Kobayashi T, Morioka H, Chiba K, Toyama Y, Yoshimura A (2011) IL-1β and TNFα-initiated IL-6–STAT3 pathway is critical in mediating inflammatory cytokines and RANKL expression in inflammatory arthritis. Int Immunol 23:701–712PubMedCrossRefGoogle Scholar
  51. 51.
    Samavati L, Rastogi R, Du W, Hüttemann M, Fite A, Franchi L (2009) STAT3 tyrosine phosphorylation is critical for interleukin 1 beta and interleukin-6 production in response to lipopolysaccharide and live bacteria. Mol Immunol 46:1867–1877PubMedCrossRefGoogle Scholar
  52. 52.
    Bode JG, Ehlting C, Häussinger D (2012) The macrophage response towards LPS and its control through the p38(MAPK)–STAT3 axis. Cell Signal 24:1185–1194PubMedCrossRefGoogle Scholar
  53. 53.
    Wang Y, Ren X, Deng C, Yang L, Yan E, Guo T, Li Y, Xu MX (2013) Mechanism of the inhibition of the STAT3 signaling pathway by EGCG. Oncol Rep 30:2691–2696PubMedGoogle Scholar
  54. 54.
    Wung B-S, Hsu M-C, Wu C-C, Hsieh C-W (2005) Resveratrol suppresses IL-6-induced ICAM-1 gene expression in endothelial cells: effects on the inhibition of STAT3 phosphorylation. Life Sci 78:389–397PubMedCrossRefGoogle Scholar
  55. 55.
    Oyagbemi A, Saba A, Azeez O (2010) Capsaicin: a novel chemopreventive molecule and its underlying molecular mechanisms of action. Indian J Cancer 47:53–58PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yong Xia
    • 1
  • Pham Ngoc Khoi
    • 1
  • Hyun Joong Yoon
    • 1
  • Sen Lian
    • 1
  • Young Eun Joo
    • 1
  • Kee Oh Chay
    • 1
  • Kyung Keun Kim
    • 1
  • Young Do Jung
    • 1
    • 2
  1. 1.Research Institute of Medical SciencesChonnam National University Medical SchoolGwangjuRepublic of Korea
  2. 2.Department of BiochemistryChonnam National University Medical SchoolGwangjuRepublic of Korea

Personalised recommendations