Molecular and Cellular Biochemistry

, Volume 398, Issue 1–2, pp 11–19 | Cite as

Knockdown of ANLN by lentivirus inhibits cell growth and migration in human breast cancer

  • Weibing Zhou
  • Zhan Wang
  • Ni Shen
  • Weiwei Pi
  • Wuzhong Jiang
  • Juan Huang
  • Yuanping Hu
  • Xiong Li
  • Lunquan SunEmail author


Anillin (ANLN), an actin-binding protein, is required for cytokinesis. Recently, ANLN has been identified as a biomarker in diverse human cancers; however, the precise role of ANLN in breast cancer remains unclear. In this study, we firstly detected the expression of ANLN in 71 patients with breast cancer by immunohistochemistry, and found ANLN was highly expressed in breast cancer tissues. To evaluate the function of ANLN in breast cancer cells, we employed lentivirus-mediated RNA interference to knock down ANLN expression in two human breast cancer cell lines, MDA-MB-231, and ZR-75-30. Knockdown of ANLN remarkably inhibited the proliferation rate and colony formation ability of both breast cancer cell lines. Moreover, flow cytometry analysis showed that depletion of ANLN in MDA-MB-231 cells blocked the cell cycle progression, with more cells delayed at G2/M phase, due to phosphorylation of Cdc2 and suppression of Cyclin D1. Furthermore, knockdown of ANLN strongly suppressed the migration of breast cancer cells, strengthening the evidence that ANLN could be involved in breast cancer progression. Our results may suggest ANLN as a potential target candidate in breast cancer.


Anillin Breast cancer Immunohistochemistry RNA interference Proliferation 



This study was supported by a Grant from the National Natural Science Foundation of China (81372842).

Supplementary material

11010_2014_2200_MOESM1_ESM.docx (11 kb)
Supplementary material 1 (DOCX 10 kb)
11010_2014_2200_MOESM2_ESM.tif (552 kb)
Supplementary material 2 (TIFF 552 kb)


  1. 1.
    Field CM, Alberts BM (1995) Anillin, a contractile ring protein that cycles from the nucleus to the cell cortex. J Cell Biol 131:165–178PubMedCrossRefGoogle Scholar
  2. 2.
    Zhang L, Maddox AS (2010) Anillin. Curr Biol 20:R135–R136. doi: 10.1016/j.cub.2009.12.017 PubMedCrossRefGoogle Scholar
  3. 3.
    Piekny AJ, Maddox AS (2010) The myriad roles of Anillin during cytokinesis. Semin Cell Dev Biol 21:881–891. doi: 10.1016/j.semcdb.2010.08.002 PubMedCrossRefGoogle Scholar
  4. 4.
    Hickson GR, O’Farrell PH (2008) Anillin: a pivotal organizer of the cytokinetic machinery. Biochem Soc Trans 36:439–441. doi: 10.1042/BST0360439 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Sisson JC, Field C, Ventura R, Royou A, Sullivan W (2000) Lava lamp, a novel peripheral golgi protein, is required for Drosophila melanogaster cellularization. J Cell Biol 151:905–918PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Straight AF, Field CM, Mitchison TJ (2005) Anillin binds nonmuscle myosin II and regulates the contractile ring. Mol Biol Cell 16:193–201. doi: 10.1091/mbc.E04-08-0758 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Oegema K, Savoian MS, Mitchison TJ, Field CM (2000) Functional analysis of a human homologue of the Drosophila actin binding protein anillin suggests a role in cytokinesis. J Cell Biol 150:539–552PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Kinoshita M, Field CM, Coughlin ML, Straight AF, Mitchison TJ (2002) Self- and actin-templated assembly of Mammalian septins. Dev Cell 3:791–802PubMedCrossRefGoogle Scholar
  9. 9.
    Piekny AJ, Glotzer M (2008) Anillin is a scaffold protein that links RhoA, actin, and myosin during cytokinesis. Curr Biol 18:30–36. doi: 10.1016/j.cub.2007.11.068 PubMedCrossRefGoogle Scholar
  10. 10.
    D’Avino PP, Takeda T, Capalbo L, Zhang W, Lilley KS, Laue ED, Glover DM (2008) Interaction between anillin and RacGAP50C connects the actomyosin contractile ring with spindle microtubules at the cell division site. J Cell Sci 121:1151–1158. doi: 10.1242/jcs.026716 PubMedCrossRefGoogle Scholar
  11. 11.
    Gregory SL, Ebrahimi S, Milverton J, Jones WM, Bejsovec A, Saint R (2008) Cell division requires a direct link between microtubule-bound RacGAP and anillin in the contractile ring. Curr Biol 18:25–29. doi: 10.1016/j.cub.2007.11.050 PubMedCrossRefGoogle Scholar
  12. 12.
    Hall PA, Todd CB, Hyland PL, McDade SS, Grabsch H, Dattani M, Hillan KJ, Russell SE (2005) The septin-binding protein anillin is overexpressed in diverse human tumors. Clin Cancer Res 11:6780–6786. doi: 10.1158/1078-0432.ccr-05-0997 PubMedCrossRefGoogle Scholar
  13. 13.
    Olakowski M, Tyszkiewicz T, Jarzab M, Krol R, Oczko-Wojciechowska M, Kowalska M, Kowal M, Gala GM, Kajor M, Lange D, Chmielik E, Gubala E, Lampe P, Jarzab B (2009) NBL1 and anillin (ANLN) genes over-expression in pancreatic carcinoma. Folia Histochem Cytobiol 47:249–255. doi: 10.2478/v10042-009-0031-1 PubMedCrossRefGoogle Scholar
  14. 14.
    Suzuki C, Daigo Y, Ishikawa N, Kato T, Hayama S, Ito T, Tsuchiya E, Nakamura Y (2005) ANLN plays a critical role in human lung carcinogenesis through the activation of RHOA and by involvement in the phosphoinositide 3-kinase/AKT pathway. Cancer Res 65:11314–11325. doi: 10.1158/0008-5472.CAN-05-1507 PubMedCrossRefGoogle Scholar
  15. 15.
    den Hollander P, Savage MI, Brown PH (2013) Targeted Therapy for Breast Cancer Prevention. Front Oncol 3:250. doi: 10.3389/fonc.2013.00250 Google Scholar
  16. 16.
    Labrie F (2007) Drug insight: breast cancer prevention and tissue-targeted hormone replacement therapy. Nat Clin Pract Endocrinol Metab 3:584–593. doi: 10.1038/ncpendmet0559 PubMedCrossRefGoogle Scholar
  17. 17.
    Pc OL, Penny SA, Dolan RT, Kelly CM, Madden SF, Rexhepaj E, Brennan DJ, McCann AH, Ponten F, Uhlen M, Zagozdzon R, Duffy MJ, Kell MR, Jirstrom K, Gallagher WM (2013) Systematic antibody generation and validation via tissue microarray technology leading to identification of a novel protein prognostic panel in breast cancer. BMC Cancer 13:175. doi: 10.1186/1471-2407-13-175 CrossRefGoogle Scholar
  18. 18.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90. doi: 10.3322/caac.20107 PubMedCrossRefGoogle Scholar
  19. 19.
    Bartosch B, Cosset FL (2004) Strategies for retargeted gene delivery using vectors derived from lentiviruses. Curr Gene Ther 4:427–443PubMedCrossRefGoogle Scholar
  20. 20.
    Emeagi PU, Goyvaerts C, Maenhout S, Pen J, Thielemans K, Breckpot K (2013) Lentiviral vectors: a versatile tool to fight cancer. Curr Mol Med 13:602–625PubMedCrossRefGoogle Scholar
  21. 21.
    Shimizu S, Seki N, Sugimoto T, Horiguchi S, Tanzawa H, Hanazawa T, Okamoto Y (2007) Identification of molecular targets in head and neck squamous cell carcinomas based on genome-wide gene expression profiling. Oncol Rep 18:1489–1497PubMedGoogle Scholar
  22. 22.
    Skrzypski M, Jassem E, Taron M, Sanchez JJ, Mendez P, Rzyman W, Gulida G, Raz D, Jablons D, Provencio M, Massuti B, Chaib I, Perez-Roca L, Jassem J, Rosell R (2008) Three-gene expression signature predicts survival in early-stage squamous cell carcinoma of the lung. Clin Cancer Res 14:4794–4799. doi: 10.1158/1078-0432.CCR-08-0576 PubMedCrossRefGoogle Scholar
  23. 23.
    Ronkainen H, Hirvikoski P, Kauppila S, Vaarala MH (2011) Anillin expression is a marker of favourable prognosis in patients with renal cell carcinoma. Oncol Rep 25:129–133PubMedGoogle Scholar
  24. 24.
    Kim H, Kim K, Yu SJ, Jang ES, Yu J, Cho G, Yoon JH, Kim Y (2013) Development of biomarkers for screening hepatocellular carcinoma using global data mining and multiple reaction monitoring. PLoS ONE 8:e63468. doi: 10.1371/journal.pone.0063468 PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Hong J, Liu Z, Zhu H, Zhang X, Liang Y, Yao S, Wang F, Xie X, Zhang B, Tan T, Fu L, Nie J, Cheng C (2014) The tumor suppressive role of NUMB isoform 1 in esophageal squamous cell carcinoma. Oncotarget 5:5602–5614PubMedCentralPubMedGoogle Scholar
  26. 26.
    Dong Y, Sui L, Sugimoto K, Tai Y, Tokuda M (2001) Cyclin D1-CDK4 complex, a possible critical factor for cell proliferation and prognosis in laryngeal squamous cell carcinomas. Int J Cancer 95:209–215PubMedCrossRefGoogle Scholar
  27. 27.
    Zhong Z, Yeow WS, Zou C, Wassell R, Wang C, Pestell RG, Quong JN, Quong AA (2010) Cyclin D1/cyclin-dependent kinase 4 interacts with filamin A and affects the migration and invasion potential of breast cancer cells. Cancer Res 70:2105–2114. doi: 10.1158/0008-5472.CAN-08-1108 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Weibing Zhou
    • 1
  • Zhan Wang
    • 1
  • Ni Shen
    • 1
  • Weiwei Pi
    • 1
  • Wuzhong Jiang
    • 1
  • Juan Huang
    • 2
  • Yuanping Hu
    • 2
  • Xiong Li
    • 3
  • Lunquan Sun
    • 3
    Email author
  1. 1.Department of Oncology, Xiangya HospitalCentral South UniversityChangshaChina
  2. 2.Hunan Province Clinic Meditech Research Center for Breast Cancer, Xiangya HospitalCentral South UniversityChangshaChina
  3. 3.Center for Molecular Medicine, Xiangya HospitalCentral South UniversityChangshaChina

Personalised recommendations