Molecular and Cellular Biochemistry

, Volume 398, Issue 1–2, pp 1–9 | Cite as

Hepatic stellate cell is activated by microRNA-181b via PTEN/Akt pathway

  • Jianjian Zheng
  • Cunzao Wu
  • Ziqiang Xu
  • Peng Xia
  • Peihong Dong
  • Bicheng Chen
  • Fujun Yu


Activation of hepatic stellate cells (HSCs) is an essential event in the initiation and progression of liver fibrosis. MicroRNAs have been shown to play a pivotal role in regulating HSC functions such as cell proliferation, differentiation, and apoptosis. Recently, miR-181b has been reported to promote HSCs proliferation by targeting p27. But whether alpha-smooth muscle actin (α-SMA) or collagens could be promoted by miR-181b in activated HSCs is still not clear. Therefore, the understanding of the role of miR-181b in liver fibrosis remains limited. Our results showed that miR-181b expression was increased much higher than miR-181a expression in vitro in transforming growth factor-β1-induced HSC activation as well as in vivo in carbon tetrachloride-induced rat liver fibrosis. Of note, overexpression of miR-181b significantly increased the expressions level of α-SMA and type I collagen, and further promoted HSCs proliferation. Furthermore, phosphatase and tensin homologs deleted on chromosome 10 (PTEN), a negative regulator of PI3K/Akt pathway, were confirmed as a direct target of miR-181b. We demonstrated that miR-181b could suppress PTEN expression and increase Akt phosphorylation in HSCs. Interestingly, the effects of miR-181b on the activation of HSCs were blocked down by Akt inhibitor LY294002. Our results revealed a profibrotic role of miR-181b in HSC activation and demonstrated that miR-181b could activate HSCs, at least in part, via PTEN/Akt pathway.


microRNA-181b Hepatic stellate cells PTEN TGF-β1 



Phosphatase and tensin homolog deleted on chromosome 10


Hepatic stellate cells




Extracellular matrix


Alpha-smooth muscle actin


Transforming growth factor-β1


3′-Untranslated region


Carbon tetrachloride


Alpha-1(I) collagen



The Project was supported by National Natural Science Foundation of China (81000176/H0317, 81100292/H0317), Zhejiang Provincial Natural Science Foundation of China (Y2090326, Y2110634), Wang Bao-En Liver Fibrosis Foundation (Nos. 20100002, 20120127), Department of Science and Technology of Zhejiang Province (2013C37006), Department of Education of Zhejiang Province (Y201326684), Wenzhou Municipal Science and Technology Bureau (Y20100188, Y20120127) and the key disciplines in Colleges and Universities of Zhejiang Province.

Conflict of interest



  1. 1.
    Olaso E, Friedman SL (1998) Molecular regulation of hepatic fibrogenesis. J Hepatol 29(5):836–847PubMedCrossRefGoogle Scholar
  2. 2.
    Kwiecinski M, Noetel A, Elfimova N, Trebicka J, Schievenbusch S, Strack I, Molnar L, von Brandenstein M, Tox U, Nischt R, Coutelle O, Dienes HP, Odenthal M (2011) Hepatocyte growth factor (HGF) inhibits collagen I and IV synthesis in hepatic stellate cells by miRNA-29 induction. PLoS ONE 6(9):e24568. doi: 10.1371/journal.pone.0024568 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Wei J, Feng L, Li Z, Xu G, Fan X (2013) MicroRNA-21 activates hepatic stellate cells via PTEN/Akt signaling. Biomed Pharmacother 67(5):387–392. doi: 10.1016/j.biopha.2013.03.014 PubMedCrossRefGoogle Scholar
  4. 4.
    Friedman SL (2008) Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 88(1):125–172. doi: 10.1152/physrev.00013.2007 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Dooley S, Delvoux B, Streckert M, Bonzel L, Stopa M, ten Dijke P, Gressner AM (2001) Transforming growth factor beta signal transduction in hepatic stellate cells via Smad2/3 phosphorylation, a pathway that is abrogated during in vitro progression to myofibroblasts. TGFbeta signal transduction during transdifferentiation of hepatic stellate cells. FEBS Lett 502(1–2):4–10PubMedCrossRefGoogle Scholar
  6. 6.
    Croce CM, Calin GA (2005) miRNAs, cancer, and stem cell division. Cell 122(1):6–7. doi: 10.1016/j.cell.2005.06.036 PubMedCrossRefGoogle Scholar
  7. 7.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297PubMedCrossRefGoogle Scholar
  8. 8.
    Ji J, Zhang J, Huang G, Qian J, Wang X, Mei S (2009) Over-expressed microRNA-27a and 27b influence fat accumulation and cell proliferation during rat hepatic stellate cell activation. FEBS Lett 583(4):759–766. doi: 10.1016/j.febslet.2009.01.034 PubMedCrossRefGoogle Scholar
  9. 9.
    Guo CJ, Pan Q, Li DG, Sun H, Liu BW (2009) miR-15b and miR-16 are implicated in activation of the rat hepatic stellate cell: an essential role for apoptosis. J Hepatol 50(4):766–778. doi: 10.1016/j.jhep.2008.11.025 PubMedCrossRefGoogle Scholar
  10. 10.
    Lakner AM, Steuerwald NM, Walling TL, Ghosh S, Li T, McKillop IH, Russo MW, Bonkovsky HL, Schrum LW (2012) Inhibitory effects of microRNA 19b in hepatic stellate cell-mediated fibrogenesis. Hepatology 56(1):300–310. doi: 10.1002/hep.25613 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Zheng J, Wu C, Lin Z, Guo Y, Shi L, Dong P, Lu Z, Gao S, Liao Y, Chen B, Yu F (2013) Curcumin up-regulates phosphatase and tensin homologue deleted on chromosome 10 through microRNA-mediated control of DNA methylation—a novel mechanism suppressing liver fibrosis. FEBS J. doi: 10.1111/febs.12574 Google Scholar
  12. 12.
    Wang B, Li W, Guo K, Xiao Y, Wang Y, Fan J (2012) miR-181b promotes hepatic stellate cells proliferation by targeting p27 and is elevated in the serum of cirrhosis patients. Biochem Biophys Res Commun 421(1):4–8. doi: 10.1016/j.bbrc.2012.03.025 PubMedCrossRefGoogle Scholar
  13. 13.
    Yao QY, Xu BL, Wang JY, Liu HC, Zhang SC, Tu CT (2012) Inhibition by curcumin of multiple sites of the transforming growth factor-beta1 signalling pathway ameliorates the progression of liver fibrosis induced by carbon tetrachloride in rats. BMC Complement Altern Med 12(156). doi: 10.1186/1472-6882-12-156
  14. 14.
    Zheng J, Lin Z, Dong P, Lu Z, Gao S, Chen X, Wu C, Yu F (2013) Activation of hepatic stellate cells is suppressed by microRNA-150. Int J Mol Med 32(1):17–24. doi: 10.3892/ijmm.2013.1356 PubMedGoogle Scholar
  15. 15.
    Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108PubMedCrossRefGoogle Scholar
  16. 16.
    Xu L, Hui AY, Albanis E, Arthur MJ, O’Byrne SM, Blaner WS, Mukherjee P, Friedman SL, Eng FJ (2005) Human hepatic stellate cell lines, LX-1 and LX-2: new tools for analysis of hepatic fibrosis. Gut 54(1):142–151. doi: 10.1136/gut.2004.042127 PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Schuppan D, Ruehl M, Somasundaram R, Hahn EG (2001) Matrix as a modulator of hepatic fibrogenesis. Semin Liver Dis 21(3):351–372. doi: 10.1055/s-2001-17556 PubMedCrossRefGoogle Scholar
  18. 18.
    Bian EB, Huang C, Ma TT, Tao H, Zhang H, Cheng C, Lv XW, Li J (2012) DNMT1-mediated PTEN hypermethylation confers hepatic stellate cell activation and liver fibrogenesis in rats. Toxicol Appl Pharmacol 264(1):13–22. doi: 10.1016/j.taap.2012.06.022 PubMedCrossRefGoogle Scholar
  19. 19.
    Zheng J, Wu C, Lin Z, Guo Y, Shi L, Dong P, Lu Z, Gao S, Liao Y, Chen B, Yu F (2014) Curcumin up-regulates phosphatase and tensin homologue deleted on chromosome 10 through microRNA-mediated control of DNA methylation—a novel mechanism suppressing liver fibrosis. FEBS J 281(1):88–103. doi: 10.1111/febs.12574 PubMedCrossRefGoogle Scholar
  20. 20.
    Parsons CJ, Takashima M, Rippe RA (2007) Molecular mechanisms of hepatic fibrogenesis. J Gastroenterol Hepatol 22(Suppl 1):S79–S84. doi: 10.1111/j.1440-1746.2006.04659.x PubMedCrossRefGoogle Scholar
  21. 21.
    He Y, Huang C, Zhang SP, Sun X, Long XR, Li J (2012) The potential of microRNAs in liver fibrosis. Cell Signal 24(12):2268–2272. doi: 10.1016/j.cellsig.2012.07.023 PubMedCrossRefGoogle Scholar
  22. 22.
    Lin J, Chen A (2008) Activation of peroxisome proliferator-activated receptor-gamma by curcumin blocks the signaling pathways for PDGF and EGF in hepatic stellate cells. Lab Investig 88(5):529–540. doi: 10.1038/labinvest.2008.20 PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Takashima M, Parsons CJ, Ikejima K, Watanabe S, White ES, Rippe RA (2009) The tumor suppressor protein PTEN inhibits rat hepatic stellate cell activation. J Gastroenterol 44(8):847–855. doi: 10.1007/s00535-009-0073-3 PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Liu H, Li H, Guo L, Li M, Li C, Wang S, Jiang W, Liu X, McNutt MA, Li G (2010) Mechanisms involved in phosphatidylinositol 3-kinase pathway mediated up-regulation of the mu opioid receptor in lymphocytes. Biochem Pharmacol 79(3):516–523. doi: 10.1016/j.bcp.2009.09.013 PubMedCrossRefGoogle Scholar
  25. 25.
    Gabele E, Reif S, Tsukada S, Bataller R, Yata Y, Morris T, Schrum LW, Brenner DA, Rippe RA (2005) The role of p70S6K in hepatic stellate cell collagen gene expression and cell proliferation. J Biol Chem 280(14):13374–13382. doi: 10.1074/jbc.M409444200 PubMedCrossRefGoogle Scholar
  26. 26.
    Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273(22):13375–13378PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Wenzhou Key Laboratory of SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouPeople’s Republic of China
  2. 2.Institute of Organ TransplantationThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouPeople’s Republic of China
  3. 3.Department of Infectious DiseasesThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouPeople’s Republic of China

Personalised recommendations