Molecular and Cellular Biochemistry

, Volume 397, Issue 1–2, pp 97–107 | Cite as

Short-term but not long-term hypoglycaemia enhances plasma levels and hepatic expression of HSP72 in insulin-treated rats: an effect associated with increased IL-6 levels but not with IL-10 or TNF–α

  • Mirna Stela Ludwig
  • Vânia Cibele Minguetti-Câmara
  • Thiago Gomes Heck
  • Sofia Pizzato Scomazzon
  • Patrícia Renck Nunes
  • Roberto Barbosa Bazotte
  • Paulo Ivo Homem de BittencourtJr.Email author


The inducible expression of the 70-kDa heat shock proteins (HSP70) is associated with homeostatically stressful situations. Stresses involving sympathetic nervous system (SNS) activation, including α1-adrenergic agonists and physical exercise, are capable of inducing HSP70 expression and release of the HSP70 inducible form, HSP72. However, whether hypoglycaemia is capable of influencing HSP70 status under a stressful situation such as insulin-induced hypoglycaemia (IIH), which also involves SNS activation, is unsettled. Hence, we decided to investigate whether the predominant signal for HSP70 expression and delivery into the blood comes from either low glucose, high insulin, or both during short-term IIH (STIIH) and long-term IIH (LTIIH). Our data indicated that low glucose level (up to 1.56 ± 0.14 mM), but not insulin, is the triggering factor responsible for a dramatic rise in HSP72 plasma concentrations (from 0.15 ± 0.01 in fed state to 0.77 ± 0.13 ng/mL during hypoglycaemic episodes). This was observed in parallel with up to 7-fold increases in interleukin-6 (IL–6) but not interleukin-10 (IL–10) or tumour necrosis factor-α (TNF–α) at STIIH. Together, the observations may suggest that HSP72 is released under hypoglycaemic conditions as a part of the homeostatic stress response, whereas at long-term, both hypoglycaemia and insulin may influence HSP72 expression in the liver, but not in kidneys. Secreted extracellular HSP72 (eHSP72) may be purely a danger signal to all the tissues of the body for the enhancement of immune and metabolic surveillance state or actively participates in glycaemic control under stressful situations.


Hypoglycaemia Heat shock proteins HSP72 Cytokine Insulin 



The 70 kDa family of heat shock proteins


Insulin-induced hypoglycaemia






Tumour necrosis factor alpha


Short-term IIH


Long-term IIH


Sympathetic nervous system



This work was partially supported by grants received from the Brazilian National Council for Scientific and Technological Development (CNPq): grants from MCT/CNPq, MS/DECIT, CT-CIOTEC and CTSaúde, process #551097/2007–8, 563870/2010-9, 402626/2012-5 and 402364/2012-0, to PIHBJ and RBB; Fundação Araucária (to RBB). TGH was supported by a fellowship from Brazilian Federal Agency for the Support and Evaluation of Graduate (CAPES) while SPS and PRN were supported by fellowships from CNPq. All the authors have agreed to the submission and had final approval of the submitted and published versions.

Conflict of interest

The authors declare no conflict of interest and no competing interests such as consultancies, financial involvement, patent ownership, etc. in relation to the work described.


  1. 1.
    Boorstein WR, Ziegelhoffer T, Craig EA (1994) Molecular evolution of the HSP70 multigene family. J Mol Evol 38:1–17PubMedCrossRefGoogle Scholar
  2. 2.
    Krenek S, Schlegel M, Berendonk TU (2013) Convergent evolution of heat-inducibility during subfunctionalization of the Hsp70 gene family. BMC Evol Biol 13:49. doi: 10.1186/1471-2148-13-49 PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18:571–573CrossRefGoogle Scholar
  4. 4.
    Hageman J, van Waarde MA, Zylicz A, Walerych D, Kampinga HH (2011) The diverse members of the mammalian HSP70 machine show distinct chaperone-like activities. Biochem J 435:127–142. doi: 10.1042/BJ20101247 PubMedCrossRefGoogle Scholar
  5. 5.
    Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111. doi: 10.1007/s12192-008-0068-7 PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Newsholme P, de Bittencourt PI Jr (2014) The fat cell senescence hypothesis: a mechanism responsible for abrogating the resolution of inflammation in chronic disease. Curr Opin Clin Nutr Metab Care 17:295–305. doi: 10.1097/MCO.0000000000000077 PubMedCrossRefGoogle Scholar
  7. 7.
    Krause M, Rodrigues-Krause J, O’Hagan C, Medlow P, Davison G, Susta D, Boreham C, Newsholme P, O’Donnell M, Murphy C, De Vito G (2014) The effects of aerobic exercise training at two different intensities in obesity and type 2 diabetes: implications for oxidative stress, low-grade inflammation and nitric oxide production. Eur J Appl Physiol 114:251–260. doi: 10.1007/s00421-013-2769-6 PubMedCrossRefGoogle Scholar
  8. 8.
    Hooper PL, Balogh G, Rivas E, Kavanagh K, Vigh L (2014) The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes. Cell Stress Chaperones 19:447–464. doi: 10.1007/s12192-014-0493-8 PubMedCrossRefGoogle Scholar
  9. 9.
    Rodrigues-Krause J, Krause M, O’Hagan C, De Vito G, Boreham C, Murphy C, Newsholme P, Colleran G (2012) Divergence of intracellular and extracellular HSP72 in type 2 diabetes: does fat matter? Cell Stress Chaperones 17:293–302. doi: 10.1007/s12192-011-0319-x PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Krause M, Keane K, Rodrigues-Krause J, Crognale D, Egan B, De Vito G, Murphy C, Newsholme P (2014) Elevated levels of extracellular heat-shock protein 72 (eHSP72) are positively correlated with insulin resistance in vivo and cause pancreatic beta-cell dysfunction and death in vitro. Clin Sci (Lond) 126:739–752. doi: 10.1042/CS20130678 CrossRefGoogle Scholar
  11. 11.
    Ogawa K, Kim HK, Shimizu T, Abe S, Shiga Y, Calderwood SK (2012) Plasma heat shock protein 72 as a biomarker of sarcopenia in elderly people. Cell Stress Chaperones 17:349–359. doi: 10.1007/s12192-011-0310-6 PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    De Maio A, Vazquez D (2013) Extracellular heat shock proteins: a new location, a new function. Shock 40:239–246. doi: 10.1097/SHK.0b013e3182a185ab PubMedCrossRefGoogle Scholar
  13. 13.
    Heck TG, Scholer CM, de Bittencourt PI (2011) HSP70 expression: does it a novel fatigue signalling factor from immune system to the brain? Cell Biochem Funct 29:215–226. doi: 10.1002/cbf.1739 PubMedCrossRefGoogle Scholar
  14. 14.
    Chin JH, Okazaki M, Hu ZW, Miller JW, Hoffman BB (1996) Activation of heat shock protein (hsp) 70 and proto-oncogene expression by alpha1 adrenergic agonist in rat aorta with age. J Clin Invest 97:2316–2323. doi: 10.1172/JCI118674 PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Giraldo E, Multhoff G, Ortega E (2010) Noradrenaline increases the expression and release of Hsp72 by human neutrophils. Brain Behav Immun 24:672–677. doi: 10.1016/j.bbi.2010.02.003 PubMedCrossRefGoogle Scholar
  16. 16.
    Lacoste A, Malham SK, Cueff A, Poulet SA (2001) Noradrenaline modulates oyster hemocyte phagocytosis via a beta-adrenergic receptor-cAMP signaling pathway. Gen Comp Endocrinol 122:252–259. doi: 10.1006/gcen.2001.7643 PubMedCrossRefGoogle Scholar
  17. 17.
    Johnson JD, Campisi J, Sharkey CM, Kennedy SL, Nickerson M, Fleshner M (2005) Adrenergic receptors mediate stress-induced elevations in extracellular Hsp72. J Appl Physiol 99:1789–1795. doi: 10.1152/japplphysiol.00390.2005 PubMedCrossRefGoogle Scholar
  18. 18.
    Liu Y, Gampert L, Nething K, Steinacker JM (2006) Response and function of skeletal muscle heat shock protein 70. Front Biosci 11:2802–2827PubMedCrossRefGoogle Scholar
  19. 19.
    Walsh RC, Koukoulas I, Garnham A, Moseley PL, Hargreaves M, Febbraio MA (2001) Exercise increases serum Hsp72 in humans. Cell Stress Chaperones 6:386–393PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Febbraio MA, Ott P, Nielsen HB, Steensberg A, Keller C, Krustrup P, Secher NH, Pedersen BK (2002) Exercise induces hepatosplanchnic release of heat shock protein 72 in humans. J Physiol 544:957–962PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Febbraio MA, Mesa JL, Chung J, Steensberg A, Keller C, Nielsen HB, Krustrup P, Ott P, Secher NH, Pedersen BK (2004) Glucose ingestion attenuates the exercise-induced increase in circulating heat shock protein 72 and heat shock protein 60 in humans. Cell Stress Chaperones 9:390–396PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Bergstedt K, Hu BR, Wieloch T (1993) Initiation of protein synthesis and heat-shock protein-72 expression in the rat brain following severe insulin-induced hypoglycemia. Acta Neuropathol 86:145–153PubMedCrossRefGoogle Scholar
  23. 23.
    Souza HM, Hell NS, Lopes G, Bazotte RB (1996) Synergistic effect of counterregulatory hormones during insulin-induced hypoglycemia in rats: participation of lipolysis and gluconeogenesis to hyperglycemia. Zhongguo Yao Li Xue Bao 17:455–459PubMedGoogle Scholar
  24. 24.
    Ting LP, Tu CL, Chou CK (1989) Insulin-induced expression of human heat-shock protein gene hsp70. J Biol Chem 264:3404–3408PubMedGoogle Scholar
  25. 25.
    Carey AL, Steinberg GR, Macaulay SL, Thomas WG, Holmes AG, Ramm G, Prelovsek O, Hohnen-Behrens C, Watt MJ, James DE, Kemp BE, Pedersen BK, Febbraio MA (2006) Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 55:2688–2697. doi: 10.2337/db05-1404 PubMedCrossRefGoogle Scholar
  26. 26.
    Barrena HC, Gazola VA, Furlan MM, Garcia RF, de Souza HM, Bazotte RB (2009) Ketogenesis evaluation in perfused liver of diabetic rats submitted to short-term insulin-induced hypoglycemia. Cell Biochem Funct 27:383–387. doi: 10.1002/cbf.1586 PubMedCrossRefGoogle Scholar
  27. 27.
    Rodrigues R, Feitosa KP, Felisberto-Junior AM, Barrena HC, Curi R, Bazotte RB (2011) Comparative effects of short-term and long-term insulin-induced hypoglycemia on glucose production in the perfused livers of weaned rats. Pharmacol Rep 63:1252–1257PubMedCrossRefGoogle Scholar
  28. 28.
    Carrara MA, Batista MR, Saruhashi TR, Felisberto AM Jr, Guilhermetti M, Bazotte RB (2012) Coexistence of insulin resistance and increased glucose tolerance in pregnant rats: a physiological mechanism for glucose maintenance. Life Sci 90:831–837. doi: 10.1016/j.lfs.2012.03.037 PubMedCrossRefGoogle Scholar
  29. 29.
    Brown ET, Umino Y, Loi T, Solessio E, Barlow R (2005) Anesthesia can cause sustained hyperglycemia in C57/BL6J mice. Vis Neurosci 22:615–618. doi: 10.1017/S0952523805225105 PubMedCrossRefGoogle Scholar
  30. 30.
    Saha JK, Xia J, Grondin JM, Engle SK, Jakubowski JA (2005) Acute hyperglycemia induced by ketamine/xylazine anesthesia in rats: mechanisms and implications for preclinical models. Exp Biol Med (Maywood) 230:777–784Google Scholar
  31. 31.
    Chang Y, Chen TL, Sheu JR, Chen RM (2005) Suppressive effects of ketamine on macrophage functions. Toxicol Appl Pharmacol 204:27–35. doi: 10.1016/j.taap.2004.08.011 PubMedCrossRefGoogle Scholar
  32. 32.
    Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S (2011) The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta 1813:878–888. doi: 10.1016/j.bbamcr.2011.01.034 PubMedCrossRefGoogle Scholar
  33. 33.
    Ye J, Zhu R, He X, Feng Y, Yang L, Zhu X, Deng Q, Wu T, Zhang X (2014) Association of plasma IL-6 and Hsp70 with HRV at different levels of PAHs metabolites. PLoS One 9:e92964. doi: 10.1371/journal.pone.0092964 PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Kolberg A, Rosa TG, Puhl MT, Scola G, da Rocha Janner D, Maslinkiewicz A, Lagranha DJ, Heck TG, Curi R, de Bittencourt PI Jr (2006) Low expression of MRP1/GS-X pump ATPase in lymphocytes of Walker 256 tumour-bearing rats is associated with cyclopentenone prostaglandin accumulation and cancer immunodeficiency. Cell Biochem Funct 24:23–39. doi: 10.1002/cbf.1290 PubMedCrossRefGoogle Scholar
  35. 35.
    Krause MS, McClenaghan NH, Flatt PR, de Bittencourt PI, Murphy C, Newsholme P (2011) l-arginine is essential for pancreatic beta-cell functional integrity, metabolism and defense from inflammatory challenge. J Endocrinol 211:87–97. doi: 10.1530/JOE-11-0236 PubMedCrossRefGoogle Scholar
  36. 36.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  37. 37.
    Hightower LE, Guidon PT Jr (1989) Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J Cell Physiol 138:257–266. doi: 10.1002/jcp.1041380206 PubMedCrossRefGoogle Scholar
  38. 38.
    Lancaster GI, Febbraio MA (2005) Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J Biol Chem 280:23349–23355. doi: 10.1074/jbc.M502017200 PubMedCrossRefGoogle Scholar
  39. 39.
    Keller S, Sanderson MP, Stoeck A, Altevogt P (2006) Exosomes: from biogenesis and secretion to biological function. Immunol Lett 107:102–108. doi: 10.1016/j.imlet.2006.09.005 PubMedCrossRefGoogle Scholar
  40. 40.
    Savina A, Furlan M, Vidal M, Colombo MI (2003) Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J Biol Chem 278:20083–20090. doi: 10.1074/jbc.M301642200 PubMedCrossRefGoogle Scholar
  41. 41.
    Sawa T, Imamura T, Haruta T, Sasaoka T, Ishiki M, Takata Y, Takada Y, Morioka H, Ishihara H, Usui I, Kobayashi M (1996) Hsp70 family molecular chaperones and mutant insulin receptor: differential binding specificities of BiP and Hsp70/Hsc70 determines accumulation or degradation of insulin receptor. Biochem Biophys Res Commun 218:449–453. doi: 10.1006/bbrc.1996.0080 PubMedCrossRefGoogle Scholar
  42. 42.
    Shyu WC, Chen CP, Saeki K, Kubosaki A, Matusmoto Y, Onodera T, Ding DC, Chiang MF, Lee YJ, Lin SZ, Li H (2005) Hypoglycemia enhances the expression of prion protein and heat-shock protein 70 in a mouse neuroblastoma cell line. J Neurosci Res 80:887–894. doi: 10.1002/jnr.20509 PubMedCrossRefGoogle Scholar
  43. 43.
    Gobbel GT, Chan TY, Chan PH (1995) Amelioration of hypoxic and hypoglycemic damage to cerebral endothelial cells. Effects of heat shock pretreatment. Mol Chem Neuropathol 24:107–120PubMedCrossRefGoogle Scholar
  44. 44.
    Krause MS, Bittencourt A, Homem de Bittencourt PI Jr, McClenaghan NH, Flatt PR, Murphy C, Newsholme P (2012) Physiological concentrations of interleukin-6 directly promote insulin secretion, signal transduction, nitric oxide release, and redox status in a clonal pancreatic beta-cell line and mouse islets. J Endocrinol 214:301–311. doi: 10.1530/JOE-12-0223 CrossRefGoogle Scholar
  45. 45.
    de Galan BE, Netea MG, Smits P, van der Meer JW (2003) Hypoglycaemia downregulates endotoxin-induced production of tumour necrosis factor-alpha, but does not affect IL-1beta, IL-6, or IL-10. Cytokine 22:71–76PubMedCrossRefGoogle Scholar
  46. 46.
    Bach E, Nielsen RR, Vendelbo MH, Moller AB, Jessen N, Buhl M, K-Hafstrøm T, Holm L, Pedersen SB, Pilegaard H, Bienso RS, Jorgensen JO, Moller N (2013) Direct effects of TNF-alpha on local fuel metabolism and cytokine levels in the placebo-controlled, bilaterally infused human leg: increased insulin sensitivity, increased net protein breakdown, and increased IL-6 release. Diabetes 62:4023–4029. doi: 10.2337/db13-0138 PubMedCrossRefGoogle Scholar
  47. 47.
    Dotson S, Freeman R, Failing HJ, Adler GK (2008) Hypoglycemia increases serum interleukin-6 levels in healthy men and women. Diabetes Care 31:1222–1223. doi: 10.2337/dc07-2243 PubMedCrossRefGoogle Scholar
  48. 48.
    Febbraio MA, Steensberg A, Fischer CP, Keller C, Hiscock N, Pedersen BK (2002) IL-6 activates HSP72 gene expression in human skeletal muscle. Biochem Biophys Res Commun 296:1264–1266PubMedCrossRefGoogle Scholar
  49. 49.
    Febbraio MA, Steensberg A, Keller C, Starkie RL, Nielsen HB, Krustrup P, Ott P, Secher NH, Pedersen BK (2003) Glucose ingestion attenuates interleukin-6 release from contracting skeletal muscle in humans. J Physiol 549:607–612. doi: 10.1113/jphysiol.2003.042374 PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Moller JC, Kruttgen A, Burmester R, Weis J, Oertel WH, Shooter EM (2006) Release of interleukin-6 via the regulated secretory pathway in PC12 cells. Neurosci Lett 400:75–79. doi: 10.1016/j.neulet.2006.02.018 PubMedCrossRefGoogle Scholar
  51. 51.
    Febbraio MA, Pedersen BK (2002) Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. FASEB J 16:1335–1347. doi: 10.1096/fj.01-0876rev PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mirna Stela Ludwig
    • 1
  • Vânia Cibele Minguetti-Câmara
    • 2
  • Thiago Gomes Heck
    • 3
  • Sofia Pizzato Scomazzon
    • 1
  • Patrícia Renck Nunes
    • 1
  • Roberto Barbosa Bazotte
    • 2
  • Paulo Ivo Homem de BittencourtJr.
    • 1
    • 4
    Email author
  1. 1.Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health SciencesFederal University of Rio Grande do SulPorto AlegreBrazil
  2. 2.Department of Pharmacology and TherapeuticsState University of MaringáMaringáBrazil
  3. 3.Research Physiology Group, Post-Graduation Program in Integral Attention to Health, Department of Life SciencesRegional University of the Northwest of Rio Grande do Sul StateIjuíBrazil
  4. 4.National Institute of Hormones and Women’s Health (INCT)Porto AlegreBrazil

Personalised recommendations