Molecular and Cellular Biochemistry

, Volume 396, Issue 1–2, pp 269–280 | Cite as

Rutin modulates ASC expression in NLRP3 inflammasome: a study in alcohol and cerulein-induced rat model of pancreatitis

  • Ravikumar Aruna
  • Arumugam Geetha
  • Periyanayagam Suguna


Inflammasomes are protein complexes formed in response to tissue injury and inflammation to regulate the formation of proinflammatory cytokines. Nod-like receptor pyrin domain containing 3 (NLRP3) is one such inflammasome involved in pancreatic inflammation. Caspase activation recruitment domain (CARD) is an interaction motif found in all the major components of NLRP3 inflammasome such as apoptosis associated speck-like CARD containing protein (ASC) and procaspase-1. NLRP3 activates procaspase-1 with the concerted action of CARD domain of ASC. In the present study, the effect of rutin, a natural flavonoid on the expression of ASC of NLRP3, was investigated in rats treated with ethanol (EtOH) and cerulein (Cer). Male albino Wistar rats were divided into four groups. Groups 1 and 2 rats were fed normal diet, whereas groups 3 and 4 rats were fed EtOH (36 % of total calories) containing diet for a total period of 5 weeks and also administered Cer (20 µg/kg body weight i.p.) thrice weekly for the last 3 weeks. In addition, groups 2 and 4 rats received daily 100 mg/kg body weight of rutin from third week. Rutin co-administration significantly decreased the level of pancreatic marker enzymes, oxidative stress markers, inflammatory markers, mRNA expression of caspase-1, cytokines, ASC–NLRP3, and protein expression of caspase-1 and ASC in rats received EtOH–Cer. The results of the study revealed that rutin can reduce inflammation in pancreas probably by influencing the down regulation of ASC–NLRP3 which might result in the reduced activation of caspase-1 and controlled cytokine production.


Caspase-1 ASC–NLRP3 EtOH–cerulein Pancreatitis Proinflammatory cytokines Rutin 



Nod-like receptor pyrin domain containing 3


Caspase activation recruitment domain


Apoptosis associated speck-like CARD containing protein



We thank Mr. Pazanimuthu Annamalai, Principal Scientist, Department of Biomedical Sciences, Sri Ramachandra University, for his expert technical support in RT-PCR study. This work was supported by Indian Council of Medical Research (ICMR) [Senior Research Fellow, file no.: 45/51/2012/BMS/TRM], New Delhi, India.


  1. 1.
    Beglinger C (1997) Pathophysiological events in chronic pancreatitis: the current concept. In: Malfertheiner P, Dominguez-Munoz JE, Schulz U, Lippert H (eds) Diagnostic procedures in pancreatic disease. Springer, Berlin, pp 161–164. doi: 10.1007/978-3-642-60580-2_19 CrossRefGoogle Scholar
  2. 2.
    Haber PS, Apte MV, Moran C, Applegate TL, Pirola RC, Korsten MA, McCaughan GW, Wilson JS (2004) Non-oxidative metabolism of ethanol by rat pancreatic acini. Pancreatology 4:82–89. doi: 10.1159/000077608 PubMedCrossRefGoogle Scholar
  3. 3.
    Bhatia M, Wong FL, Cao Y, Lau HY, Huang J, Puneet P, Chevali L (2005) Pathophysiology of acute pancreatitis. Pancreatology 5:132–144. doi: 10.1159/000085265 PubMedCrossRefGoogle Scholar
  4. 4.
    Saluja AK, Bhagat L, Lee HS, Bhatia M, Frossard JL, Steer ML (1999) Secretagogue-induced digestive enzyme activation and cell injury in rat pancreatic acini. Am J Physiol 276:G835–G842PubMedGoogle Scholar
  5. 5.
    Bhatia M, Brady M, Shokuhi S, Christmas S, Neoptolemos JP, Slavin J (2000) Inflammatory mediators in acute pancreatitis. J Pathol 190:117–125. doi: 10.1002/(SICI)1096-9896(200002) PubMedCrossRefGoogle Scholar
  6. 6.
    Granger J, Remick D (2005) Acute pancreatitis: models, markers and mediators. Shock 24:45–51. doi: 10.1097/01.shk.0000191413.94461.b0 PubMedCrossRefGoogle Scholar
  7. 7.
    Stehlik C (2007) The PYRIN domain in signal transduction. Curr Protein Pept Sci 8:293–310. doi: 10.2174/138920307780831857 PubMedCrossRefGoogle Scholar
  8. 8.
    Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J (2004) NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle–Wells autoinflammatory disorder. Immunity 20:319–325. doi: 10.1016/S1074-7613(04)00046-9 PubMedCrossRefGoogle Scholar
  9. 9.
    Aganna E, Hawkins PN, Ozen S, Pettersson T, Bybee A et al (2004) Allelic variants in genes associated with hereditary periodic fever syndromes as susceptibility factors for reactive systemic AA amyloidosis. Genes Immun 5:289–293. doi: 10.1038/sj.gene.6364070 PubMedCrossRefGoogle Scholar
  10. 10.
    Stienstraa R, Diepend JAV, Tack CJ, Hasan Zaki MH, Veerdonka FLV, Perera D (2011) Inflammasome is a central player in the induction of obesity and insulin resistance. PNAS 1–6. doi: 10.1073/pnas.1100255108
  11. 11.
    Di Carlo G, Mascolo N, Izzo A, Capasso F (1999) Flavonoids: old and new aspects of a class of natural therapeutic drugs. Life Sci 65:337–353PubMedCrossRefGoogle Scholar
  12. 12.
    Jung CH, Cho HC, Kim JC (2007) Anti-asthmatic action of quercetin and rutin in conscious guinea-pigs challenged with aerosolized ovalbumin. Arch Pharmacal Res 30:1599–1607. doi: 10.1007/BF02977330 CrossRefGoogle Scholar
  13. 13.
    Narayana KR, Reddy MS, Chaluvadi MR, Krishna DR (2001) Bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential. Indian J Pharmacol 33:2–16Google Scholar
  14. 14.
    Metodiewa D (1997) Evidence for antiradical and antioxidant properties of four biologically active N,N-diethylaminoethyl ethers of flavanone oximes: a comparison with natural polyphenolic flavonoid rutin action. Biochem Mol Biol Int 41:1067–1075. doi: 10.1080/15216549700202141 PubMedGoogle Scholar
  15. 15.
    Deng X, Wang L, Elm MS, Gabazadeh D, Diorio GJ, Eagon PK, Whitcomb DC (2005) Chronic alcohol consumption accelerates fibrosis in response to cerulein-induced pancreatitis in rats. Am J Pathol 166:93–106. doi: 10.1016/S0002-9440(10)62235-3 PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Lowry RR, Tinsley IJ (1976) Rapid colorimetric determination of free fatty acids. J Am Oil Chem Soc 53:470–472. doi: 10.1007/BF02636814 PubMedCrossRefGoogle Scholar
  17. 17.
    Gomori G (1957) Assay of serum amylase with small amounts of serum. Am J Clin Pathol 27:714–716PubMedGoogle Scholar
  18. 18.
    McGowan GK, Wills MR (1962) The diagnostic value of faecal trypsin estimation in chronic pancreatic disease. J Clin Pathol 15:62–68. doi: 10.1136/jcp.15.1.62 PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR, Aunins J (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356:768–774. doi: 10.1038/356768a0 PubMedCrossRefGoogle Scholar
  20. 20.
    Bradley PP, Priebat DA, Christensen RD, Royhstein G (1982) Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Investig Dermatol 78:206–209. doi: 10.1111/1523-1747.ep12506462 PubMedCrossRefGoogle Scholar
  21. 21.
    Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxide. Methods Enzymol 186:421–431PubMedCrossRefGoogle Scholar
  22. 22.
    Miyazawa T (1989) Determination of phospholipid hydroperoxides in human blood plasma by a chemiluminescence-HPLC assay. Free Radic Biol Med 7:209–217. doi: 10.1016/0891-5849(89)90017-8 PubMedCrossRefGoogle Scholar
  23. 23.
    Miller NJ, Rice Evans CA, Davis MJ, Gopinathan V, Milner A (1993) A novel method for measuring antioxidant capacity status in premature neonates. Clin Sci 84:407–412PubMedGoogle Scholar
  24. 24.
    Moran MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochem Biophys Acta 582:67–78CrossRefGoogle Scholar
  25. 25.
    Flohe L, Gunzler W (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121PubMedCrossRefGoogle Scholar
  26. 26.
    Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 21:130–132PubMedGoogle Scholar
  27. 27.
    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. doi: 10.1016/S0076-6879(84)05016-3 PubMedCrossRefGoogle Scholar
  28. 28.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  29. 29.
    Gaisano HY, Gorelick FS (2009) New insights into the mechanisms of pancreatitis. Gastroenterology 136:2040–2044. doi: 10.1053/j.gastro.2009.04.023 PubMedCrossRefGoogle Scholar
  30. 30.
    Binker MG, Binker-Cosen AA, Richards D, Gaisano HY, Cosen RH, Cosen-Binker LI (2010) Chronic stress sensitizes rats to pancreatitis induced by cerulein: role of TNF-α. World J Gastroenterol 16:5565–5581. doi: 10.3748/wjg.v16.i44.5565 PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Yadav D, Agarwal N, Pitchumoni CS (2002) A critical evaluation of laboratory tests in acute pancreatitis. Am J Gastroenterol 97:1309–1318. doi: 10.1111/j.1572-0241.2002.05766.x PubMedCrossRefGoogle Scholar
  32. 32.
    Smotkin J, Tenner S (2002) Laboratory diagnostic tests in acute pancreatitis. J Clin Gastroenterol 34:459–462PubMedCrossRefGoogle Scholar
  33. 33.
    Smith JS, Ediss I, Mullinger MA, Bogoch A, Vancouver BC (1971) Fecal chymotrypsin and trypsin determinations. CMA J 104:691–697Google Scholar
  34. 34.
    Kettle AJ, Winterbourn CC (2001) A kinetic analysis of the catalase activity of myeloperoxidase. Biochemistry 40:10204–10212. doi: 10.1021/bi010940b PubMedCrossRefGoogle Scholar
  35. 35.
    Chooklin S, Pereyaslov A, Bihalskyy I (2009) Pathogenic role of myeloperoxidase in acute pancreatitis. Hepatobiliary Pancreat Dis Int 8:627–631PubMedGoogle Scholar
  36. 36.
    Anderson MM, Requena JR, Crowley JR, Thorpe SR, Heinecke JW (1999) The myeloperoxidase system of human phagocytes generates Nepsilon-(carboxymethyl) lysine on proteins: a mechanism for producing advanced glycation end products at sites of inflammation. J Clin Investig 104:103–113. doi: 10.1172/JCI3042 PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Ye Z, Ting JP (2008) NLR, the nucleotide-binding domain leucine-rich repeat containing gene family. Curr Opin Immunol 20:3–9. doi: 10.1016/j.coi.2008.01.003 PubMedCrossRefGoogle Scholar
  38. 38.
    Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G et al (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464:1357–1361. doi: 10.1038/nature08938 PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241. doi: 10.1038/nature04516 PubMedCrossRefGoogle Scholar
  40. 40.
    Mariathasan S, Monack DM (2007) Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol 7:31–40. doi: 10.1038/nri1997 PubMedCrossRefGoogle Scholar
  41. 41.
    Srinivasula SM, Poyet JL, Razmara M (2002) The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J Biol Chem 277:21119–21122. doi: 10.1074/jbc.C200179200 PubMedCrossRefGoogle Scholar
  42. 42.
    Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550. doi: 10.1146/annurev.immunol.021908.132612 PubMedCrossRefGoogle Scholar
  43. 43.
    Gukovsky I, Pandol SJ, Gukovskaya AS (2011) Organelles dysfunction in the pathogenesis of pancreatitis. Antioxid Redox Signal 15:2699–2710. doi: 10.1089/ars.2011.4068 PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Gukovskaya AS, Gukovsky I, Zaninovic V, Song M, Sandoval D, Gukovsky S, Pandol SJ (1997) Pancreatic acinar cells produce, release, and respond to tumor necrosis factor-alpha. Role in regulating cell death and pancreatitis. J Clin Investig 100:1853–1862. doi: 10.1172/JCI119714 PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Hussain MT, Verma AR, Vijayakumar M, Sharma A, Mathela CS, Rao CV (2009) Rutin, a natural flavonoid, protects against gastric mucosal damage in experimental animals. Asian J Tradit Med 4:188–197Google Scholar
  46. 46.
    Tian R, Tan JT, Wang RL, Xie H, Qian YB, Yu KL (2013) The role of intestinal mucosa oxidative stress in gut barrier dysfunction of severe acute pancreatitis. Eur Rev Med Pharmacol Sci 17:349–355PubMedGoogle Scholar
  47. 47.
    Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 2:192–208. doi: 10.1007/s00018-003-3206-5 CrossRefGoogle Scholar
  48. 48.
    Reddy VD, Padmavathi P, Gopi S, Paramahamsa M, Varadacharyulu NC (2010) Protective effect of Emblica officinalis against alcohol-induced hepatic injury by ameliorating oxidative stress in rats. Indian J Clin Biochem 25:419–424. doi: 10.1007/s12291-010-0058-2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ravikumar Aruna
    • 1
  • Arumugam Geetha
    • 1
  • Periyanayagam Suguna
    • 1
  1. 1.Department of Biochemistry, Bharathi Women’s CollegeAffiliated to University of MadrasChennaiIndia

Personalised recommendations