Molecular and Cellular Biochemistry

, Volume 396, Issue 1–2, pp 117–128 | Cite as

MicroRNA-204, a direct negative regulator of ezrin gene expression, inhibits glioma cell migration and invasion

  • Jie Mao
  • Mengying Zhang
  • Min Zhong
  • Yingying Zhang
  • Kun LvEmail author


Ezrin is overexpressed in a variety of neoplastic cells and involved in the later stages of tumor progression and metastasis. Ezrin expression can be regulated at both the transcriptional and post-transcriptional levels. We used a combination of bioinformatics and experimental techniques to demonstrate that the miR-204 is a direct negative regulator of ezrin. Overexpression of miR-204 mimics decreased the activity of a luciferase reporter containing the ezrin 3′ UTR and led to repression of ezrin protein. In contrast, ectopic expression of miR-204 inhibitor elevated ezrin expression. We also show that miR-204 is down-regulated in a panel of glioma tissues and in high invasive glioma cell lines we examined. Moreover, miR-204 mimics significantly reduced glioma cell migration and invasion, while miR-204 inhibitor generated the opposite results. Finally, overexpression of miR-204 and knockdown of ezrin reduced glioma cell invasion, and these effects could be rescued by re-expression of ezrin. These findings reveal that miR-204 could be partly due to its inhibitory effects on glioma cell migration and invasion through regulating ezrin expression.


MiR-204 Glioma Ezrin Migration Invasion 



This work was supported by National Natural Science Foundation of China (81300172 to K.L., 81301497 to Y.Y.Z.); Natural Science Foundation of Anhui Province (1308085QH137 to K.L., 1408085MH205 to J.M., 1408085QH148 to Y.Y.Z.).


  1. 1.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW et al (2007) The 2007 WHO classification of tumors of the central nervous system. Acta Neuropathol 114:97–109PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  3. 3.
    Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355PubMedCrossRefGoogle Scholar
  4. 4.
    Wong JW (2010) MicroRNA-induced silencing of glioma progression. J Neurosci 30:3868–3869PubMedCrossRefGoogle Scholar
  5. 5.
    Lawler S, Chiocca EA (2009) Emerging functions of microRNAs in glioblastoma. J Neurooncol 92:297–306PubMedCrossRefGoogle Scholar
  6. 6.
    Novakova J, Slaby O, Vyzula R, Michalek J (2009) MicroRNA involvement in glioblastoma pathogenesis. Biochem Biophys Res Commun 386:1–5PubMedCrossRefGoogle Scholar
  7. 7.
    Rao SA, Santosh V, Somasundaram K (2010) Genomewide expression profiling identifies deregulated miRNAs in malignant astrocytoma. Mod Pathol 23:1404–1417PubMedCrossRefGoogle Scholar
  8. 8.
    Srinivasan S, Patric IR, Somasundaram K (2011) A ten microRNA expression signature predicts survival in glioblastoma. PLoS ONE 6:e17438PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Kim TM, Huang W, Park R, Park PJ, Johnson MD (2011) A developmental taxonomy of glioblastoma defined and maintained by microRNAs. Cancer Res 71:3387–3399PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Saotome I, Curto M, McClatchey AI (2004) Ezrin is essential for epithelial organization and villus morphogenesis in the developing intestine. Dev Cell 6:855–864PubMedCrossRefGoogle Scholar
  11. 11.
    Faure S, Salazar-Fontana LI, Semichon M, Tybulewicz VL, Bismuth G, Trautmann A, Germain RN et al (2004) ERM proteins regulate cytoskeleton relaxation promoting T cell-APC conjugation. Nat Immunol 5:272–279PubMedCrossRefGoogle Scholar
  12. 12.
    Georgescu MM, Morales FC, Molina JR, Hayashi Y (2008) Roles of NHERF1/EBP50 in cancer. Curr Mol Med 8:459–468PubMedCrossRefGoogle Scholar
  13. 13.
    Geiger KD, Stoldt P, Schlote W, Derouiche A (2000) Ezrin immunoreactivity is associated with increasing malignancy of astrocytic tumors but is absent in oligodendrogliomas. Am J Pathol 157:1785–1793PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Tynninen O, Carpén O, Jääskeläinen J, Paavonen T, Paetau A (2004) Ezrin expression in tissue microarray of primary and recurrent gliomas. Neuropathol Appl Neurobiol 30:472–477PubMedCrossRefGoogle Scholar
  15. 15.
    Mao J, Yuan XR, Xu SS, Jiang XC, Zhao XT (2013) Expression and functional significance of ezrin in human brain astrocytoma. Cell Biochem Biophys 67:1507–1511PubMedCrossRefGoogle Scholar
  16. 16.
    Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The resource: targets and expression. Nucleic Acids Res 36:D149–D153PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500PubMedCrossRefGoogle Scholar
  20. 20.
    Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10:1507–1517PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798PubMedCrossRefGoogle Scholar
  22. 22.
    de Ridder LI, Laerum OD, Mørk SJ, Bigner DD (1987) Invasiveness of human glioma cell lines in vitro: relation to tumorigenicity in athymic mice. Acta Neuropathol 72:207–213PubMedCrossRefGoogle Scholar
  23. 23.
    Lam EK, Wang X, Shin VY, Zhang S, Morrison H, Sun J, Ng EK et al (2011) A microRNA contribution to aberrant Ras activation in gastric cancer. Am J Transl Res 3(2):209–218PubMedPubMedCentralGoogle Scholar
  24. 24.
    Zhu J, Feng Y, Ke Z, Yang Z, Zhou J, Huang X, Wang L (2012) Down-regulation of miR-183 promotes migration and invasion of osteosarcoma by targeting ezrin. Am J Pathol 180:2440–2451PubMedCrossRefGoogle Scholar
  25. 25.
    Bretscher A, Edwards K, Fehon RG (2002) ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 3:586–599PubMedCrossRefGoogle Scholar
  26. 26.
    Yao X, Forte JG (2003) Cell biology of acid secretion in gastric parietal cells. Annu Rev Physiol 65:103–131PubMedCrossRefGoogle Scholar
  27. 27.
    Roumier A, Olivo-Marin JC, Arpin M, Michel F, Martin M, Mangeat P, Acuto O et al (2001) The membrane-microfilament linker ezrin is involved in the formation of the immunological synapse and in T cell activation. Immunity 15:715–728PubMedCrossRefGoogle Scholar
  28. 28.
    Furutani Y, Matsuno H, Kawasaki M, Sasaki T, Mori K, Yoshihara Y (2007) Interaction between telencephalin and ERM family proteins mediates dendritic filopodia formation. J Neurosci 27:8866–8876PubMedCrossRefGoogle Scholar
  29. 29.
    Morales FC, Molina JR, Hayashi Y, Georgescu MM (2010) Overexpression of ezrin inactivates NF2 tumor suppressor in glioblastoma. Neuro Oncol 12:528–539PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Chen Y, Wang D, Guo Z, Zhao J, Wu B, Deng H, Zhou T et al (2011) Rho kinase phosphorylation promotes ezrin-mediated metastasis in hepatocellular carcinoma. Cancer Res 71:1721–1729PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Gavert N, Ben-Shmuel A, Lemmon V, Brabletz T, Ben-Ze’ev A (2010) Nuclear factor-κB signaling and ezrin are essential for L1-mediated metastasis of colon cancer cells. J Cell Sci 123:2135–2143PubMedCrossRefGoogle Scholar
  32. 32.
    Hoelzinger DB, Demuth T, Berens ME (2007) Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J Natl Cancer Inst 99:1583–1593PubMedCrossRefGoogle Scholar
  33. 33.
    Demuth T, Berens ME (2004) Molecular mechanisms of glioma cell migration and invasion. J Neurooncol 70:217–228PubMedCrossRefGoogle Scholar
  34. 34.
    Mareel M, Leroy A (2003) Clinical, cellular, and molecular aspects of cancer invasion. Physiol Rev 83:337–376PubMedGoogle Scholar
  35. 35.
    Fillmore HL, VanMeter TE, Broaddus WC (2001) Membranetype matrix metalloproteinases (MT-MMPs): expression and function during glioma invasion. J Neurooncol 53:187–202PubMedCrossRefGoogle Scholar
  36. 36.
    Xia H, Qi Y, Ng SS, Chen X, Li D, Chen S, Ge R et al (2009) microRNA-146b inhibits glioma cell migration and invasion by targeting MMPs. Brain Res 1269:158–165PubMedCrossRefGoogle Scholar
  37. 37.
    Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS, Krichevsky AM (2008) MicroRNA-21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 28:5369–5380PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Sasayama T, Nishihara M, Kondoh T, Hosoda K, Kohmura E (2009) MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int J Cancer 125:1407–1413PubMedCrossRefGoogle Scholar
  39. 39.
    Gabriely G, Yi M, Narayan RS, Niers JM, Wurdinger T, Imitola J, Ligon KL et al (2011) Human glioma growth is controlled by microRNA-10b. Cancer Res 71:3563–3572PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Zheng F, Liao YJ, Cai MY, Liu YH, Liu TH, Chen SP, Bian XW et al (2012) The putative tumor suppressor microRNA-124 modulates hepatocellular carcinoma cell aggressiveness by repressing ROCK2 and EZH2. Gut 61:278–289PubMedCrossRefGoogle Scholar
  41. 41.
    Xia H, Cheung WK, Ng SS, Jiang X, Jiang S, Sze J, Leung GK et al (2012) Loss of brain-enriched miR-124 microRNA enhances stem-like traits and invasiveness of glioma cells. J Biol Chem 287:9962–9971PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Ying Zhe, Li Yun, Jueheng Wu, Zhu Xun, Yang Yi, Tian Han, Li Wei et al (2013) Loss of miR-204 expression enhances glioma migration and stem cell-like phenotype. Cancer Res 73:990–999PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jie Mao
    • 1
  • Mengying Zhang
    • 2
  • Min Zhong
    • 2
  • Yingying Zhang
    • 3
  • Kun Lv
    • 2
    Email author
  1. 1.Department of Neurosurgery of The first affiliated HospitalWannan Medical CollegeWuhuPeople’s Republic of China
  2. 2.Central Laboratory of The first affiliated HospitalWannan Medical CollegeWuhuPeople’s Republic of China
  3. 3.Laboratory Medicine of The first affiliated HospitalWannan Medical CollegeWuhuPeople’s Republic of China

Personalised recommendations