Molecular and Cellular Biochemistry

, Volume 395, Issue 1–2, pp 145–154 | Cite as

The PPARβ/δ agonist GW0742 modulates signaling pathways associated with cardiac myocyte growth via a non-genomic redox mechanism

  • Eleftheria Galatou
  • Tara Kelly
  • Antigone LazouEmail author


Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that belong to the nuclear hormone receptor superfamily and appear to have beneficial effects in the cardiovascular system. PPARβ/δ has been shown previously to exert an inhibitory effect on cardiac myocyte hypertrophy in vivo and in vitro although the exact mechanism is not fully clear yet. The principal signaling pathways that have been involved in triggering cardiac hypertrophic response are mitogen-activated protein kinases (MAPKs) and PI3K/Akt cascades. In this study, we sought to evaluate the potential effects evoked by PPARβ/δ activation on signaling pathways that are implicated in cardiac myocyte growth responses. The selective PPARβ/δ agonist GW0742 attenuated ERK1/2 and Akt phosphorylation that was stimulated by growth promoting agonists (phenylephrine, insulin or IGF-1). This effect was not reversed by the specific PPARβ/δ antagonist, GSK0660, but was inhibited by vanadate, a potent protein tyrosine phosphatase inhibitor. In addition, GW0742 prevented the oxidation and inactivation of PTEN supporting further the notion that its inhibitory action on the agonist-induced kinase phosphorylation is mediated by the modulation of phosphatase activity. Furthermore, GW0742 abolished the agonist-induced intracellular generation of reactive oxygen species, independently of PPARβ/δ activation. Our data reveals a new non-genomic mechanism of GW0742, which ameliorates the generation of reactive oxygen species and attenuates ERK1/2 and PI3K/Akt signaling, with implications in the regulation of cardiac hypertrophic response.


Cardiac hypertrophy PI3K/Akt ERK1/2 PTEN Protein tyrosine phosphatases Superoxide dismutase Reactive oxygen species 



This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund.


  1. 1.
    Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signaling pathways. Nat Rev Mol Cell Biol 7:589–600PubMedCrossRefGoogle Scholar
  2. 2.
    Clerk A, Cullingford TE, Fuller SJ, Giraldo A, Markou T, Pikkarainen S et al (2007) Signaling pathways mediating cardiac myocyte gene expression in physiological and stress responses. J Cell Physiol 212:311–322PubMedCrossRefGoogle Scholar
  3. 3.
    Rohini A, Agrawal N, Koyani CN, Singh R (2010) Molecular targets and regulators of cardiac hypertrophy. Pharmacol Res 61(4):269–280PubMedCrossRefGoogle Scholar
  4. 4.
    Ceci M, Ross J Jr, Condorelli G (2004) Molecular determinants of the physiological adaptation to stress in the cardiomyocyte: a focus on AKT. J Mol Cell Cardiol 37:905–912PubMedCrossRefGoogle Scholar
  5. 5.
    Matsui T, Rosenzweig A (2005) Convergent signal transduction pathways controlling cardiomyocyte survival and function: the role of PI 3-kinase and Akt. J Mol Cell Cardiol 38:63–71PubMedCrossRefGoogle Scholar
  6. 6.
    Vanhaesebroeck B, Alessi DR (2000) The PI3K-PDK1 connection: more than just a road to PKB. Biochem J 346:561–576PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Markou T, Barlaka E, Bartucci M, Lazou A (2011) Signal transduction pathways through cytoprotective, apoptotic and hypertrophic stimuli: a comparative study in adult cardiac myocytes. Cell Biochem Funct 29(6):442–451PubMedCrossRefGoogle Scholar
  8. 8.
    Pimentel DR, Amin JK, Xiao L, Miller T, Viereck J, Oliver-Krasinski J et al (2001) Reactive oxygen species mediate amplitude-dependent hypertrophic and apoptotic responses to mechanical stretch in cardiac myocytes. Circ Res 89(5):453–460PubMedCrossRefGoogle Scholar
  9. 9.
    Inagi R (2006) Oxidative stress in cardiovascular disease: a new avenue toward future therapeutic approaches. Recent Pat Cardiovasc Drug Discov 1(2):151–159PubMedCrossRefGoogle Scholar
  10. 10.
    Takimoto E, Kass DA (2007) Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension 49(2):241–248PubMedCrossRefGoogle Scholar
  11. 11.
    Yang Q, Li Y (2007) Roles of PPARs on regulating myocardial energy and lipid homeostasis. J Mol Med (Berl) 85(7):697–706CrossRefGoogle Scholar
  12. 12.
    Ravingerova T, Adameova A, Carnicka S, Nemcekova M, Kelly T, Matejikova J et al (2011) The role of PPAR in myocardial response to ischemia in normal and diseased heart. Gen Physiol Biophys 30(4):329–341PubMedCrossRefGoogle Scholar
  13. 13.
    Lotz C, Lazariotto M, Redel A, Smul Tm, Stumpner J, Blomeyer C et al (2011) Activation of peroxisome-proliferator-activated receptors α and γ mediates remote ischemic preconditioning against myocardial infarction in vivo. Exp Biol Med 236:113–122CrossRefGoogle Scholar
  14. 14.
    Ravingerová T, Carnická S, Nemčeková M, Ledvényiová V, Adameová A, Kelly T et al (2012) PPAR-alpha activation as a preconditioning-like intervention in rats in vivo confers myocardial protection against acute ischaemia-reperfusion injury: involvement of PI3K-Akt. Can J Physiol Pharmacol 90(8):1135–1144PubMedGoogle Scholar
  15. 15.
    Barlaka E, Ledvényiová V, Galatou E, Ferko M, Čarnická S, Ravingerová T, Lazou A (2013) Delayed cardioprotective effects of WY-14643 are associated with inhibition of MMP-2 and modulation of Bcl-2 family proteins through PPAR-α activation in rat hearts subjected to global ischaemia-reperfusion. Can J Physiol Pharmacol 91(8):608–616PubMedGoogle Scholar
  16. 16.
    Inoue I, Goto S, Matsunaga T, Nakajima T, Awata T, Hokari S, Komoda T, Katayama S (2001) The ligands/activators for peroxisome proliferator-activated receptor alpha (PPARalpha) and PPARgamma increase Cu2+, Zn2+-superoxide dismutase and decrease p22phox message expressions in primary endothelial cells. Metabolism 50(1):3–11PubMedCrossRefGoogle Scholar
  17. 17.
    Smeets PJH, Planavila A, Van Der Vusse GJ, Van Bilsen M (2007) Peroxisome proliferator-activated receptors and inflammation: take it to heart. Acta Physiol 191:171–188CrossRefGoogle Scholar
  18. 18.
    Cheng L, Ding G, Qin Q, Huang Y, Lewis W, He N et al (2004) Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med 10(11):1245–1250PubMedCrossRefGoogle Scholar
  19. 19.
    Planavila A, Rodriguez-Calvo R, Jove M, Michalik L, Wahli W (2005) Peroxisome proliferator-activated receptor β/δ activation inhibits hypertrophy in neonatal rat cardiomyocytes. Cardiovasc Res 65(4):832–841PubMedCrossRefGoogle Scholar
  20. 20.
    Sheng L, Ye P, Liu YX, Han CG, Zhang ZY (2008) Peroxisome proliferator-activated receptor beta/delta activation improves angiotensin II-induced cardiac hypertrophy in vitro. Clin Exp Hypertens 30(2):109–119PubMedCrossRefGoogle Scholar
  21. 21.
    Pesant M, Sueur S, Dutartre P, Tallandier M, Grimaldi PA, Rochette L, Connat JL (2006) Peroxisome proliferator-activated receptor delta (PPARdelta) activation protects H9c2 cardiomyoblasts from oxidative stress-induced apoptosis. Cardiovasc Res 1 69(2):440–449CrossRefGoogle Scholar
  22. 22.
    Sznaidman ML, Haffner CD, Maloney PR, Fivush A, Chao E, Goreham D et al (2003) Novel selective small molecule agonists for peroxisome proliferator-activated receptor delta (PPARdelta) synthesis and biological activity. Bioorg Med Chem Lett 13(9):1517–1521PubMedCrossRefGoogle Scholar
  23. 23.
    Shearer BG, Steger DJ, Way JM, Stanley TB, Lobe DC, Grillot DA et al (2008) Identification and characterization of a selective peroxisome proliferator-activated receptor beta/delta (NR1C2) antagonist. Mol Endocrinol 22(2):523–529PubMedCrossRefGoogle Scholar
  24. 24.
    Markou T, Dowling AA, Kelly T, Lazou A (2009) Regulation of Bcl-2 phosphorylation in response to oxidative stress in cardiac myocytes. Free Radic Res 43(9):809–816PubMedCrossRefGoogle Scholar
  25. 25.
    Markou T, Lazou A (2002) Phosphorylation and activation of mitogen- and stress-activated protein kinase-1 in adult rat cardiac myocytes by G-protein-coupled receptor agonists requires both extracellular-signal-regulated kinase and p38 mitogen-activated protein kinase. Biochem J 365:757–763PubMedCentralPubMedGoogle Scholar
  26. 26.
    Markou T, Hadzopoulou-Cladaras M, Lazou A (2004) Phenylephrine induces activation of CREB in adult rat cardiac myocytes through MSK1 and PKA signaling pathways. J Mol Cell Cardiol 37:1001–1011PubMedCrossRefGoogle Scholar
  27. 27.
    Markou T, Cieslak D, Gaitanaki C, Lazou A (2009) Differential roles of MAPKs and MSK1 signalling pathways in the regulation of c-Jun during phenylephrine-induced cardiac myocyte hypertrophy. Mol Cell Biochem 322(1–2):103–112PubMedCrossRefGoogle Scholar
  28. 28.
    Palm-Leis A, Singh SU, Herbelin SB, Olsovsky DG, Baker MK, Pan J (2004) Mitogen-activated protein kinases and mitogen-activated protein kinase phosphatases mediate the inhibitory effects of all-trans retinoic acid on the hypertrophic growth of cardiomyocytes. J Biol Chem 279(52):54905–54917PubMedCrossRefGoogle Scholar
  29. 29.
    Shah BH, Olivares-Reyes JA, Catt KJ (2005) The protein kinase C inhibitor Go6976 [12-(2-cyanoethyl)-6,7,12,13-tetrahydro-13-methyl-5-oxo-5H-indolo(2,3-a)pyrrolo(3,4-c)-carbazole] potentiates agonist-induced mitogen-activated protein kinase activation through tyrosine phosphorylation of the epidermal growth factor receptor. Mol Pharmacol 67(1):184–194PubMedCrossRefGoogle Scholar
  30. 30.
    Finkel T (2003) Oxidant signals and oxidative stress. Curr Opin Cell Biol 15:247–254PubMedCrossRefGoogle Scholar
  31. 31.
    Lee SR, Yang KS, Kwon J, Lee C, Jeong W, Rhee SG (2002) Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem 277(23):20336–20342PubMedCrossRefGoogle Scholar
  32. 32.
    Burgoyne RJ, Mongue-Din H, Eaton P, Shah MA (2012) Redox signaling in cardiac physiology and pathology. A Rev Circ Res 111:1091–1106CrossRefGoogle Scholar
  33. 33.
    Seo JH, Ahn Y, Lee SR, Yeol YC, Chung HK (2005) The major target of the endogenously generated reactive oxygen species in response to insulin stimulation is phosphatase and tensin homolog and not phosphoinositide-3 kinase (PI-3 kinase) in the PI-3 kinase/Akt pathway. Mol Biol Cell 16(1):348–357PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Liang F, Wang F, Zhang S, Gardner DG (2003) Peroxisome proliferator activated receptor (PPAR) alpha agonists inhibit hypertrophy of neonatal rat cardiac myocytes. Endocrinology 144(9):4187–4194PubMedCrossRefGoogle Scholar
  35. 35.
    Planavila A, Laguna JC, Vázquez-Carrera M (2005) Atorvastatin improves peroxisome proliferator-activated receptor signaling in cardiac hypertrophy by preventing nuclear factor-kappa B activation. Biochim Biophys Acta 1687(1–3):76–83PubMedCrossRefGoogle Scholar
  36. 36.
    Bao Y, Li R, Jiang J, Cai B, Gao J, Le K et al (2008) Activation of peroxisome proliferator-activated receptor gamma inhibits endothelin-1-induced cardiac hypertrophy via the calcineurin/NFAT signaling pathway. Mol Cell Biochem 317(1–2):189–196PubMedCrossRefGoogle Scholar
  37. 37.
    Lazou A, Sugden PH, Clerk A (1998) Activation of mitogen-activated protein kinases (p38-MAPKs, SAPKs/JNKs and ERKs) by the G-protein-coupled receptor agonist phenylephrine in the perfused rat heart. Biochem J 332(2):459–465PubMedCentralPubMedGoogle Scholar
  38. 38.
    Huang Y, Zhang H, Shao Z, O’Hara KA, Kopilas MA, Yu L et al (2011) Suppression of endothelin-1-induced cardiac myocyte hypertrophy by PPAR agonists: role of diacylglycerol kinase zeta. Cardiovasc Res 90(2):267–275PubMedCrossRefGoogle Scholar
  39. 39.
    Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103(2):211–225PubMedCrossRefGoogle Scholar
  40. 40.
    Saxena M, Mustelin T (2000) Extracellular signals and scores of phosphatases: all roads lead to MAP kinase. Semin Immunol 12:387–396PubMedCrossRefGoogle Scholar
  41. 41.
    Meng TC, Fukada T, Tonks NK (2002) Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 9(2):387–399PubMedCrossRefGoogle Scholar
  42. 42.
    Ostman A, Frijhoff J, Sandin A, Böhmer FD (2011) Regulation of protein tyrosine phosphatases by reversible oxidation. J Biochem 150(4):345–356PubMedCrossRefGoogle Scholar
  43. 43.
    Kwon J, Lee SR, Yang KS, Ahn Y, Kim YJ, Stadtman ER, Rhee SG (2004) Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc Natl Acad Sci USA 101(47):16419–16424PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Leslie NR, Bennett D, Lindsay YE, Stewart H, Gray A, Downes CP (2003) Redox regulation of PI 3-kinase signalling via inactivation of PTEN. EMBO J 22(20):5501–5510PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Liu J, Wang P, Luo J, Huang Y, He L, Yang H et al (2011) Peroxisome proliferator-activated receptor β/δ activation in adult hearts facilitates mitochondrial function and cardiac performance under pressure-overload condition. Hypertension 57(2):223–230PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Eleftheria Galatou
    • 1
  • Tara Kelly
    • 1
  • Antigone Lazou
    • 1
    Email author
  1. 1.Laboratory of Animal Physiology, School of BiologyAristotle University of ThessalonikiThessaloníkiGreece

Personalised recommendations