Molecular and Cellular Biochemistry

, Volume 392, Issue 1–2, pp 13–30 | Cite as

Forward subtractive libraries containing genes transactivated by dexamethasone in ataxia-telangiectasia lymphoblastoid cells

  • Sara Biagiotti
  • Michele Menotta
  • Elisa Giacomini
  • Lucia Radici
  • Marzia Bianchi
  • Cristina Bozzao
  • Luciana Chessa
  • Mauro Magnani


Ataxia telangiectasia (A-T) is a rare autosomal recessive disorder caused by biallelic mutations in the Ataxia Telangiectasia-mutated gene. A-T shows a complex phenotype ranging from early-onset progressive neurodegeneration to immunodeficiencies, high incidence of infections, and tumors. Unfortunately, no therapy is up to now available for treating this condition. Recently, the short term treatment of ataxia-telangiectasia patients with glucocorticoids was shown to improve their neurological symptoms and possibly reverse cerebellar atrophy. Thus, corticosteroids represent an attractive approach for the treatment of this neurodegenerative disease. However, the molecular mechanism involved in glucocorticoid action in A-T is yet unknown. The aim of our work is to construct cDNA libraries containing those genes which are transactivated by the glucocorticoid analogue, dexamethasone, in A-T human cells. For this purpose, suppression subtractive hybridization has been performed on ATM-null lymphoblastoid cell transcriptome extracted following drug administration. Annotation of whole genes contained in the libraries has been obtained by coupling subtractive hybridization with microarray analysis. Positive transcripts have been validated by quantitative PCR. Through in silico analyses, identified genes have been classified on the basis of the pathway in which they are involved, being able to address signaling required for dexamethasone action. Most of the induced transcripts are involved in metabolic processes and regulation of cellular processes. Our results can help to unravel the mechanism of glucocorticoid action in the reversion of A-T phenotype. Moreover, the induction of a specific region of the ATM transcript has been identified as putative biomarker predictive of dexamethasone efficacy on ataxic patients.


Ataxia telangiectasia Dexamethasone Gene expression profiling Transcriptional activation Suppression subtractive hybridization 



Ataxia telangiectasia






Suppression subtractive hybridization


Glucocorticoid responsive elements


Lymphoblastoid cell lines



This work was partially supported by “Fondazione M. Vocale.” Sara Biagiotti hold a fellowship from Fondazione Cassa di Risparmio di Fano sponsorized by FANOATENEO and Associazione Nazionale A-T “Davide DeMarini.”

Supplementary material

11010_2014_2013_MOESM1_ESM.docx (49 kb)
Supplementary material 1 (DOCX 49 kb)


  1. 1.
    Savitsky K, Bar-Shira A, Gilad S et al (1995) A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268:1749–1753PubMedCrossRefGoogle Scholar
  2. 2.
    Abraham RT (2004) PI 3-kinase related kinases: ‘big’ players in stress-induced signaling pathways. DNA Repair (Amst) 3:883–887CrossRefGoogle Scholar
  3. 3.
    Shiloh Y, Ziv Y (2012) The ATM protein: the importance of being active. J Cell Biol 198:273–275PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Biton S, Barzilai A, Shiloh Y (2008) The neurological phenotype of ataxia-telangiectasia: solving a persistent puzzle. DNA Repair (Amst) 7:1028–1038CrossRefGoogle Scholar
  5. 5.
    Chun HH, Gatti RA (2004) Ataxia-telangiectasia, an evolving phenotype. DNA Repair (Amst) 3:1187–1196CrossRefGoogle Scholar
  6. 6.
    Lavin MF (2008) Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol 9:759–769PubMedCrossRefGoogle Scholar
  7. 7.
    Gilad S, Chessa L, Khosravi R et al (1998) Genotype-phenotype relationships in ataxia-telangiectasia and variants. Am J Hum Genet 62:551–561PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Broccoletti T, Del GE, Amorosi S et al (2008) Steroid-induced improvement of neurological signs in ataxia-telangiectasia patients. Eur J Neurol 15:223–228PubMedCrossRefGoogle Scholar
  9. 9.
    Broccoletti T, Del GE, Cirillo E et al (2011) Efficacy of very-low-dose betamethasone on neurological symptoms in ataxia-telangiectasia. Eur J Neurol 18:564–570PubMedCrossRefGoogle Scholar
  10. 10.
    Buoni S, Zannolli R, Sorrentino L et al (2006) Betamethasone and improvement of neurological symptoms in ataxia-telangiectasia. Arch Neurol 63:1479–1482PubMedCrossRefGoogle Scholar
  11. 11.
    Zannolli R, Sabrina B, Betti G et al (2012) A randomized trial of oral betamethasone to reduce ataxia symptoms in ataxia telangiectasia. Mov Disord 27:1312–1316PubMedCrossRefGoogle Scholar
  12. 12.
    Gatti RA, Perlman S (2009) A proposed bailout for A-T patients? Eur J Neurol 16:653–655PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Biagiotti S, Paoletti MF, Fraternale A et al (2011) Drug delivery by red blood cells. IUBMB Life 63:621–631PubMedCrossRefGoogle Scholar
  14. 14.
    Bossa F, Latiano A, Rossi L et al (2008) Erythrocyte-mediated delivery of dexamethasone in patients with mild-to-moderate ulcerative colitis, refractory to mesalamine: a randomized, controlled study. Am J Gastroenterol 103:2509–2516PubMedCrossRefGoogle Scholar
  15. 15.
    Castro M, Rossi L, Papadatou B et al (2007) Long-term treatment with autologous red blood cells loaded with dexamethasone 21-phosphate in pediatric patients affected by steroid-dependent Crohn disease. J Pediatr Gastroenterol Nutr 44:423–426PubMedCrossRefGoogle Scholar
  16. 16.
    Pierige F, Serafini S, Rossi L et al (2008) Cell-based drug delivery. Adv Drug Deliv Rev 60:286–295PubMedCrossRefGoogle Scholar
  17. 17.
    Reeves EK, Rayavarapu S, Damsker JM et al (2012) Glucocorticoid analogues: potential therapeutic alternatives for treating inflammatory muscle diseases. Endocr Metab Immune Disord Drug Targets 12:95–103PubMedCrossRefGoogle Scholar
  18. 18.
    Barzilai A, Biton S, Shiloh Y (2008) The role of the DNA damage response in neuronal development, organization and maintenance. DNA Repair (Amst) 7:1010–1027CrossRefGoogle Scholar
  19. 19.
    Barzilai A (2010) DNA damage, neuronal and glial cell death and neurodegeneration. Apoptosis 15:1371–1381PubMedCrossRefGoogle Scholar
  20. 20.
    Ditch S, Paull TT (2012) The ATM protein kinase and cellular redox signaling: beyond the DNA damage response. Trends Biochem Sci 37:15–22PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Russo I, Cosentino C, Del GE et al (2009) In ataxia-telangiectasia betamethasone response is inversely correlated to cerebellar atrophy and directly to antioxidative capacity. Eur J Neurol 16:755–759PubMedCrossRefGoogle Scholar
  22. 22.
    Giardino G, Fusco A, Romano R et al (2013) Betamethasone therapy in ataxia telangiectasia: unraveling the rationale of this serendipitous observation on the basis of the pathogenesis. Eur J Neurol 20:740–747PubMedCrossRefGoogle Scholar
  23. 23.
    Li J, Chen J, Ricupero CL et al (2012) Nuclear accumulation of HDAC4 in ATM deficiency promotes neurodegeneration in ataxia telangiectasia. Nat Med 18:783–790PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Kadmiel M, Cidlowski JA (2013) Glucocorticoid receptor signaling in health and disease. Trends Pharmacol Sci 34:518–530PubMedCrossRefGoogle Scholar
  25. 25.
    Oakley RH, Cidlowski JA (2013) The biology of the glucocorticoid receptor: new signaling mechanisms in health and disease. J Allergy Clin Immunol 132(5):1033–1044Google Scholar
  26. 26.
    Barnes PJ (2011) Glucocorticosteroids: current and future directions. Br J Pharmacol 163:29–43PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Rhen T, Cidlowski JA (2005) Antiinflammatory action of glucocorticoids: new mechanisms for old drugs. N Engl J Med 353:1711–1723PubMedCrossRefGoogle Scholar
  28. 28.
    Lit L, Sharp FR, Apperson M et al (2009) Corticosteroid effects on blood gene expression in Duchenne muscular dystrophy. Pharmacogenomics J 9:411–418PubMedCrossRefGoogle Scholar
  29. 29.
    Diatchenko L, Lau YF, Campbell AP et al (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Menotta M, Biagiotti S, Bianchi M et al (2012) Dexamethasone partially rescues ataxia telangiectasia-mutated (ATM) deficiency in ataxia telangiectasia by promoting a shortened protein variant retaining kinase activity. J Biol Chem 287:41352–41363PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Nishimura M, Koeda A, Suzuki E et al (2006) Effects of prototypical drug-metabolizing enzyme inducers on mRNA expression of housekeeping genes in primary cultures of human and rat hepatocytes. Biochem Biophys Res Commun 346:1033–1039PubMedCrossRefGoogle Scholar
  32. 32.
    de Kok JB, Roelofs RW, Giesendorf BA et al (2005) Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Lab Invest 85:154–159PubMedCrossRefGoogle Scholar
  33. 33.
    Yakubov E, Dinerman P, Kuperstein F et al (2005) Improved representation of gene markers on microarray by PCR-Select subtracted cDNA targets. Brain Res Mol Brain Res 137:110–118PubMedCrossRefGoogle Scholar
  34. 34.
    Harms C, Albrecht K, Harms U et al (2007) Phosphatidylinositol 3-Akt-kinase-dependent phosphorylation of p21(Waf1/Cip1) as a novel mechanism of neuroprotection by glucocorticoids. J Neurosci 27:4562–4571PubMedCrossRefGoogle Scholar
  35. 35.
    Barr CS, Dokas LA (1999) Glucocorticoids regulate the synthesis of HSP27 in rat brain slices. Brain Res 847:9–17PubMedCrossRefGoogle Scholar
  36. 36.
    Prager EM, Johnson LR (2009) Stress at the synapse: signal transduction mechanisms of adrenal steroids at neuronal membranes. Sci Signal 2:re5PubMedGoogle Scholar
  37. 37.
    Chessa L, Leuzzi V, Plebani A et al (2014) Intra-erythrocyte infusion of dexamethasone reduces neurological symptoms in ataxia telangiectasia patients: results of a phase 2 trial. Orphanet J Rare Dis 9:5PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Baschant U, Lane NE, Tuckermann J (2012) The multiple facets of glucocorticoid action in rheumatoid arthritis. Nat Rev Rheumatol 8:645–655PubMedCrossRefGoogle Scholar
  39. 39.
    Datson NA, Morsink MC, Meijer OC et al (2008) Central corticosteroid actions: search for gene targets. Eur J Pharmacol 583:272–289PubMedCrossRefGoogle Scholar
  40. 40.
    Morsink MC, Steenbergen PJ, Vos JB et al (2006) Acute activation of hippocampal glucocorticoid receptors results in different waves of gene expression throughout time. J Neuroendocrinol 18:239–252PubMedCrossRefGoogle Scholar
  41. 41.
    Datson NA, van der Perk J, de Kloet ER et al (2001) Identification of corticosteroid-responsive genes in rat hippocampus using serial analysis of gene expression. Eur J Neurosci 14:675–689PubMedCrossRefGoogle Scholar
  42. 42.
    Cosentino C, Grieco D, Costanzo V (2011) ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBO J 30:546–555PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Costanzo V (2013) ATM dependent control of cellular metabolism. Ataxia Telangiectasia Worshop 2013, University of Birmingham, Birmingham, UK, 28th–31st July 2013Google Scholar
  44. 44.
    Saad MJ, Folli F, Araki E et al (1994) Regulation of insulin receptor, insulin receptor substrate-1 and phosphatidylinositol 3-kinase in 3T3-F442A adipocytes. Effects of differentiation, insulin, and dexamethasone. Mol Endocrinol 8:545–557PubMedGoogle Scholar
  45. 45.
    Halaby MJ, Hibma JC, He J et al (2008) ATM protein kinase mediates full activation of Akt and regulates glucose transporter 4 translocation by insulin in muscle cells. Cell Signal 20:1555–1563PubMedCrossRefGoogle Scholar
  46. 46.
    Prager EM, Johnson LR (2009) Stress at the synapse: signal transduction mechanisms of adrenal steroids at neuronal membranes. Sci Signal 2:re5PubMedGoogle Scholar
  47. 47.
    Ambrose M, Gatti RA (2013) Pathogenesis of ataxia-telangiectasia: the next generation of ATM functions. Blood 121:4036–4045PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Ambrose M, Goldstine JV, Gatti RA (2007) Intrinsic mitochondrial dysfunction in ATM-deficient lymphoblastoid cells. Hum Mol Genet 16:2154–2164PubMedCrossRefGoogle Scholar
  49. 49.
    Stern N, Hochman A, Zemach N et al (2002) Accumulation of DNA damage and reduced levels of nicotine adenine dinucleotide in the brains of Atm-deficient mice. J Biol Chem 277:602–608PubMedCrossRefGoogle Scholar
  50. 50.
    Valentin-Vega YA, Maclean KH, Tait-Mulder J et al (2012) Mitochondrial dysfunction in ataxia-telangiectasia. Blood 119:1490–1500PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Valentin-Vega YA, Kastan MB (2012) A new role for ATM: regulating mitochondrial function and mitophagy. Autophagy 8:840–841PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Rachamim N, Latter H, Malinin N et al (1995) Dexamethasone enhances expression of mitochondrial oxidative phosphorylation genes in rat distal colon. Am J Physiol 269:C1305–C1310PubMedGoogle Scholar
  53. 53.
    Van Itallie CM (1992) Dexamethasone treatment increases mitochondrial RNA synthesis in a rat hepatoma cell line. Endocrinology 130:567–576PubMedGoogle Scholar
  54. 54.
    Weber K, Bruck P, Mikes Z et al (2002) Glucocorticoid hormone stimulates mitochondrial biogenesis specifically in skeletal muscle. Endocrinology 143:177–184PubMedCrossRefGoogle Scholar
  55. 55.
    Morsink MC, Joels M, Sarabdjitsingh RA et al (2006) The dynamic pattern of glucocorticoid receptor-mediated transcriptional responses in neuronal PC12 cells. J Neurochem 99:1282–1298PubMedCrossRefGoogle Scholar
  56. 56.
    Montecucco A, Biamonti G (2013) Pre-mRNA processing factors meet the DNA damage response. Front Genet 4:102PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sara Biagiotti
    • 1
  • Michele Menotta
    • 1
  • Elisa Giacomini
    • 1
  • Lucia Radici
    • 1
  • Marzia Bianchi
    • 1
  • Cristina Bozzao
    • 2
  • Luciana Chessa
    • 2
  • Mauro Magnani
    • 1
  1. 1.Department of Biomolecular SciencesUniversity of Urbino “Carlo Bo”UrbinoItaly
  2. 2.Departmernt of Clinical and Molecular MedicineSapienza UniversityRomeItaly

Personalised recommendations