Molecular and Cellular Biochemistry

, Volume 388, Issue 1–2, pp 277–286

Effects of chlorogenic acid, caffeine, and coffee on behavioral and biochemical parameters of diabetic rats

  • Naiara Stefanello
  • Roberta Schmatz
  • Luciane Belmonte Pereira
  • Maribel A. Rubin
  • João Batista Teixeira da Rocha
  • Graziela Facco
  • Maria Ester Pereira
  • Cinthia Melazzo de Andrade Mazzanti
  • Sabina Passamonti
  • Marília Valvassori Rodrigues
  • Fabiano Barbosa Carvalho
  • Michelle Melgarejo da Rosa
  • Jessie Martins Gutierres
  • Andréia Machado Cardoso
  • Vera Maria Morsch
  • Maria Rosa Chitolina Schetinger


Diabetes mellitus (DM) is associated with brain alterations that may contribute to cognitive dysfunctions. Chlorogenic acid (CGA) and caffeine (CA), abundant in coffee (CF), are natural compounds that have showed important actions in the brain. The present study aimed to evaluate the effect of CGA, CA, and CF on acetylcholinesterase (AChE), Na+, K+-ATPase, aminolevulinate dehydratase (δ-ALA-D) activities and TBARS levels from cerebral cortex, as well as memory and anxiety in streptozotocin-induced diabetic rats. Animals were divided into eight groups (n = 5–10): control; control/CGA 5 mg/kg; control/CA 15 mg/kg; control/CF 0.5 g/kg; diabetic; diabetic/CGA 5 mg/kg; diabetic/CA 15 mg/kg; and diabetic/CF 0.5 g/kg. Our results demonstrated an increase in AChE activity and TBARS levels in cerebral cortex, while δ-ALA-D and Na+, K+-ATPase activities were decreased in the diabetic rats when compared to control water group. Furthermore, a memory deficit and an increase in anxiety in diabetic rats were observed. The treatment with CGA and CA prevented the increase in AChE activity in diabetic rats when compared to the diabetic water group. CGA, CA, and CF intake partially prevented cerebral δ-ALA-D and Na+, K+-ATPase activity decrease due to diabetes. Moreover, CGA prevented diabetes-induced TBARS production, improved memory, and decreased anxiety. In conclusion, among the compounds studied CGA proved to be a compound which acts better in the prevention of brain disorders promoted by DM.


Caffeine Chlorogenic acid Coffee Diabetes mellitus 


  1. 1.
    Gannon M (2001) Molecular genetic analysis of diabetes in mice. Trends Genet 17:S23–S28PubMedCrossRefGoogle Scholar
  2. 2.
    Ahmed N, Thornalley PJ (2007) Advanced glycation endproducts: what is their relevance to diabetic complications? Diabetes Obes Metab 9:233–245. doi:10.1111/j.1463-1326.2006.00595.x PubMedCrossRefGoogle Scholar
  3. 3.
    Gispen WH, Biessels GJ (2000) Cognition and synaptic plasticity in diabetes mellitus. Trends Neurosci 23:542–549PubMedCrossRefGoogle Scholar
  4. 4.
    Schmatz R, Mazzanti CM, Spanevello R, Stefanello N, Gutierres J, Correa M, da Rosa MM, Rubin MA, Chitolina Schetinger MR, Morsch VM (2009) Resveratrol prevents memory deficits and the increase in acetylcholinesterase activity in streptozotocin-induced diabetic rats. Eur J Pharmacol 610:42–48. doi:10.1016/j.ejphar.2009.03.032 PubMedCrossRefGoogle Scholar
  5. 5.
    Pari L, Murugan P (2007) Tetrahydrocurcumin prevents brain lipid peroxidation in streptozotocin-induced diabetic rats. J Med Food 10:323–329. doi:10.1089/jmf.2006.058 PubMedCrossRefGoogle Scholar
  6. 6.
    Franzon R, Chiarani F, Mendes RH, Bello-Klein A, Wyse AT (2005) Dietary soy prevents brain Na+, K(+)-ATPase reduction in streptozotocin diabetic rats. Diabetes Res Clin Pract 69:107–112. doi:10.1016/j.diabres.2004.11.010 PubMedCrossRefGoogle Scholar
  7. 7.
    Rocha JBT, Saraiva RA, Garcia SC, Gravina FS, Nogueira CW (2012) Aminolevulinate dehydratase (δ-ALA-D) as marker protein of intoxication with metals and other pro-oxidant situations. Toxicol Res 1:85–102. doi:10.1039/C2TX20014G CrossRefGoogle Scholar
  8. 8.
    Schmatz R, Perreira LB, Stefanello N, Mazzanti C, Spanevello R, Gutierres J, Bagatini M, Martins CC, Abdalla FH, da Silva Daci, Serres J, Zanini D, Vieira JM, Cardoso AM, Schetinger MR, Morsch VM (2012) Effects of resveratrol on biomarkers of oxidative stress and on the activity of delta aminolevulinic acid dehydratase in liver and kidney of streptozotocin-induced diabetic rats. Biochimie 94:374–383. doi:10.1016/j.biochi.2011.08.005 PubMedCrossRefGoogle Scholar
  9. 9.
    Clausen T, Van Hardeveld C, Everts ME (1991) Significance of cation transport in control of energy metabolism and thermogenesis. Physiol Rev 71:733–774PubMedGoogle Scholar
  10. 10.
    Santini SA, Cotroneo P, Marra G, Manto A, Giardina B, Mordente A, Greco AV, Martorana GE, Magnani P, Ghirlanda G (1996) Na+/K+-ATPase impairment and experimental glycation: the role of glucose autoxidation. Free Radic Res 24:381–389PubMedCrossRefGoogle Scholar
  11. 11.
    Soreq H, Seidman S (2001) Acetylcholinesterase: new roles for an old actor. Nat Rev Neurosci 2:294–302. doi:10.1038/35067589 PubMedCrossRefGoogle Scholar
  12. 12.
    Spanevello R, Mazzanti CM, Schmatz R, Bagatini M, Stefanello N, Correa M, Kaizer R, Maldonado P, Mazzanti A, Graca DL, Martins TB, Danesi C, Morsch VM, Schetinger MR (2009) Effect of vitamin E on ectonucleotidase activities in synaptosomes and platelets and parameters of oxidative stress in rats experimentally demyelinated. Brain Res Bull 80:45–51. doi:10.1016/j.brainresbull.2009.05.015 PubMedCrossRefGoogle Scholar
  13. 13.
    van Dam RM (2006) Coffee and type 2 diabetes: from beans to beta-cells. Nutr Metab Cardiovasc Dis 16:69–77. doi:10.1016/j.numecd.2005.10.003 PubMedCrossRefGoogle Scholar
  14. 14.
    Greenberg JA, Boozer CN, Geliebter A (2006) Coffee, diabetes, and weight control. Am J Clin Nutr 84:682–693PubMedGoogle Scholar
  15. 15.
    McCarty MF (2005) A chlorogenic acid-induced increase in GLP-1 production may mediate the impact of heavy coffee consumption on diabetes risk. Med Hypotheses 64:848–853. doi:10.1016/j.mehy.2004.03.037 PubMedCrossRefGoogle Scholar
  16. 16.
    Cho AS, Jeon SM, Kim MJ, Yeo J, Seo KI, Choi MS, Lee MK (2010) Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem Toxicol 48:937–943. doi:10.1016/j.fct.2010.01.003 PubMedCrossRefGoogle Scholar
  17. 17.
    Zang LY, Cosma G, Gardner H, Castranova V, Vallyathan V (2003) Effect of chlorogenic acid on hydroxyl radical. Mol Cell Biochem 247:205–210PubMedCrossRefGoogle Scholar
  18. 18.
    dos Santos MD, Almeida MC, Lopes NP, de Souza GE (2006) Evaluation of the anti-inflammatory, analgesic and antipyretic activities of the natural polyphenol chlorogenic acid. Biol Pharm Bull 29:2236–2240PubMedCrossRefGoogle Scholar
  19. 19.
    Li Y, Shi W, Zhou Y, Hu X, Song C, Ma H, Wang C (2008) Neuroprotective effects of chlorogenic acid against apoptosis of PC12 cells induced by methylmercury. Environ Toxicol Pharmacol 26:13–21. doi:10.1016/j.etap.2007.12.008 PubMedCrossRefGoogle Scholar
  20. 20.
    Nehlig A, Daval JL, Debry G (1992) Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res Brain Res Rev 17:139–170PubMedCrossRefGoogle Scholar
  21. 21.
    Karthikesan K, Pari L, Menon VP (2010) Combined treatment of tetrahydrocurcumin and chlorogenic acid exerts potential antihyperglycemic effect on streptozotocin-nicotinamide-induced diabetic rats. Gen Physiol Biophys 29:23–30PubMedCrossRefGoogle Scholar
  22. 22.
    Schnedl WJ, Ferber S, Johnson JH, Newgard CB (1994) STZ transport and cytotoxicity. Specific enhancement in GLUT2-expressing cells. Diabetes 43:1326–1333PubMedCrossRefGoogle Scholar
  23. 23.
    Guerra GP, Mello CF, Sauzem PD, Berlese DB, Furian AF, Tabarelli Z, Rubin MA (2006) Nitric oxide is involved in the memory facilitation induced by spermidine in rats. Psychopharmacology (Berl) 182:150–158. doi:10.1007/s00213-006-0376-5 CrossRefGoogle Scholar
  24. 24.
    Frussa-Filho R, Barbosa-Junior H, Silva RH, Da Cunha C, Mello CF (1999) Naltrexone potentiates the anxiolytic effects of chlordiazepoxide in rats exposed to novel environments. Psychopharmacology 147:168–173PubMedCrossRefGoogle Scholar
  25. 25.
    Rubin MA, Albach CA, Berlese DB, Bonacorso HG, Bittencourt SR, Queiroz CM, Maixner AE, Mello CF (2000) Anxiolytic-like effects of 4-phenyl-2-trichloromethyl-3H-1, 5-benzodiazepine hydrogen sulfate in mice. Braz J Med Biol Res 33:1069–1073PubMedCrossRefGoogle Scholar
  26. 26.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358PubMedCrossRefGoogle Scholar
  27. 27.
    Sassa S (1982) Delta-aminolevulinic acid dehydratase assay. Enzyme 28:133–145PubMedGoogle Scholar
  28. 28.
    Wyse AT, Streck EL, Barros SV, Brusque AM, Zugno AI, Wajner M (2000) Methylmalonate administration decreases Na+, K+-ATPase activity in cerebral cortex of rats. Neuroreport 11:2331–2334PubMedCrossRefGoogle Scholar
  29. 29.
    Carvalho FB, Mello CF, Marisco PC, Tonello R, Girardi BA, Ferreira J, Oliveira MS, Rubin MA (2012) Spermidine decreases Na(+), K(+)-ATPase activity through NMDA receptor and protein kinase G activation in the hippocampus of rats. Eur J Pharmacol 684:79–86. doi:10.1016/j.ejphar.2012.03.046 PubMedCrossRefGoogle Scholar
  30. 30.
    Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorous. J Biol Chem 66:375–400Google Scholar
  31. 31.
    Nagy A, Delgado-Escueta AV (1984) Rapid preparation of synaptosomes from mammalian brain using nontoxic isoosmotic gradient material (Percoll). J Neurochem 43:1114–1123PubMedCrossRefGoogle Scholar
  32. 32.
    Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95PubMedCrossRefGoogle Scholar
  33. 33.
    Rocha JBT, Emanuelli T, Pereira ME (1993) Effects of early under nutrition on kinetic parameters of brain acetylcholinesterase from adult rats. Acta Neurobiol Exp 53:431–437Google Scholar
  34. 34.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  35. 35.
    Bonnefont-Rousselot D (2002) Glucose and reactive oxygen species. Curr Opin Clin Nutr Metab Care 5:561–568PubMedCrossRefGoogle Scholar
  36. 36.
    Folmer V, Soares JC, Gabriel D, Rocha JB (2003) A high fat diet inhibits delta-aminolevulinate dehydratase and increases lipid peroxidation in mice (Mus musculus). J Nutr 133:2165–2170PubMedGoogle Scholar
  37. 37.
    Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48:1–9PubMedCrossRefGoogle Scholar
  38. 38.
    Shahidi F, Chandrasekara A (2010) Hydroxycinnamates and their in vitro and in vivo antioxidant activities. Phytochem Rev 9:147–170. doi:10.1007/s11101-009-9142-8 CrossRefGoogle Scholar
  39. 39.
    Shi X, Dalal NS, Jain AC (1991) Antioxidant behaviour of caffeine: efficient scavenging of hydroxyl radicals. Food Chem Toxicol 29:1–6PubMedCrossRefGoogle Scholar
  40. 40.
    Fan Y, Hu J, Li J, Yang Z, Xin X, Wang J, Ding J, Geng M (2005) Effect of acidic oligosaccharide sugar chain on scopolamine-induced memory impairment in rats and its related mechanisms. Neurosci Lett 374:222–226. doi:10.1016/j.neulet.2004.10.063 PubMedCrossRefGoogle Scholar
  41. 41.
    Szutowicz A, Tomaszewicz M, Bielarczyk H (1996) Disturbances of acetyl-CoA, energy and acetylcholine metabolism in some encephalopathies. Acta Neurobiol Exp 56:323–339Google Scholar
  42. 42.
    Kuhad A, Sethi R, Chopra K (2008) Lycopene attenuates diabetes-associated cognitive decline in rats. Life Sci 83:128–134. doi:10.1016/j.lfs.2008.05.013 PubMedCrossRefGoogle Scholar
  43. 43.
    Kamalakkannan N, Prince PS (2006) Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic Wistar rats. Basic Clin Pharmacol Toxicol 98:97–103. doi:10.1111/j.1742-7843.2006.pto_241.x PubMedCrossRefGoogle Scholar
  44. 44.
    Biessels GJ, Braun KP, de Graaf RA, van Eijsden P, Gispen WH, Nicolay K (2001) Cerebral metabolism in streptozotocin-diabetic rats: an in vivo magnetic resonance spectroscopy study. Diabetologia 44:346–353. doi:10.1007/s001250051625 PubMedCrossRefGoogle Scholar
  45. 45.
    Roriz-Filho JS, Sa-Roriz TM, Rosset I, Camozzato AL, Santos AC, Chaves ML, Moriguti JC, Roriz-Cruz M (2009) (Pre)diabetes, brain aging, and cognition. Biochim Biophys Acta 1792:432–443. doi:10.1016/j.bbadis.2008.12.003 CrossRefGoogle Scholar
  46. 46.
    Gasparini L, Xu H (2003) Potential roles of insulin and IGF-1 in Alzheimer’s disease. Trends Neurosci 26:404–406. doi:10.1016/S0166-2236(03)00163-2 PubMedCrossRefGoogle Scholar
  47. 47.
    Kaizer RR, Correa MC, Spanevello RM, Morsch VM, Mazzanti CM, Goncalves JF, Schetinger MR (2005) Acetylcholinesterase activation and enhanced lipid peroxidation after long-term exposure to low levels of aluminum on different mouse brain regions. J Inorg Biochem 99:1865–1870. doi:10.1016/j.jinorgbio.2005.06.015 PubMedCrossRefGoogle Scholar
  48. 48.
    Rees T, Hammond PI, Soreq H, Younkin S, Brimijoin S (2003) Acetylcholinesterase promotes beta-amyloid plaques in cerebral cortex. Neurobiol Aging 24:777–787PubMedCrossRefGoogle Scholar
  49. 49.
    Sudha S, Lakshmana MK, Pradhan N (1995) Changes in learning and memory, acetylcholinesterase activity and monoamines in brain after chronic carbamazepine administration in rats. Epilepsia 36:416–422PubMedCrossRefGoogle Scholar
  50. 50.
    Grisaru D, Sternfeld M, Eldor A, Glick D, Soreq H (1999) Structural roles of acetylcholinesterase variants in biology and pathology. Eur J Biochem 264:672–686PubMedCrossRefGoogle Scholar
  51. 51.
    Can OD, Ozturk Y, Ozkay UD (2011) Effects of insulin and St. John’s Wort treatments on anxiety, locomotory activity, depression, and active learning parameters of streptozotocin-diabetic rats. Planta Med 77:1970–1976. doi:10.1055/s-0031-1280129 PubMedCrossRefGoogle Scholar
  52. 52.
    Rajashree R, Kholkute SD, Goudar SS (2011) Effects of duration of diabetes on behavioural and cognitive parameters in streptozotocin-induced juvenile diabetic rats. Malays J Med Sci 18:26–31PubMedCentralPubMedGoogle Scholar
  53. 53.
    Gomez R, Barros HM (2003) Clonazepam increases in vivo striatal extracellular glucose in diabetic rats after glucose overload. Pharmacol Biochem Behav 76:443–450PubMedCrossRefGoogle Scholar
  54. 54.
    Antony S, Kumar TP, Kuruvilla KP, George N, Paulose CS (2010) Decreased GABA receptor binding in the cerebral cortex of insulin induced hypoglycemic and streptozotocin induced diabetic rats. Neurochem Res 35:1516–1521. doi:10.1007/s11064-010-0210-7 PubMedCrossRefGoogle Scholar
  55. 55.
    Cauli O, Morelli M (2005) Caffeine and the dopaminergic system. Behav Pharmacol 16:63–77PubMedCrossRefGoogle Scholar
  56. 56.
    Kardos J, Blandl T (1994) Inhibition of a gamma aminobutyric acid A receptor by caffeine. Neuroreport 5:1249–1252PubMedCrossRefGoogle Scholar
  57. 57.
    Bouayed J, Rammal H, Dicko A, Younos C, Soulimani R (2007) Chlorogenic acid, a polyphenol from Prunus domestica (Mirabelle), with coupled anxiolytic and antioxidant effects. J Neurol Sci 262:77–84. doi:10.1016/j.jns.2007.06.028 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Naiara Stefanello
    • 1
  • Roberta Schmatz
    • 1
  • Luciane Belmonte Pereira
    • 1
  • Maribel A. Rubin
    • 1
  • João Batista Teixeira da Rocha
    • 1
  • Graziela Facco
    • 1
  • Maria Ester Pereira
    • 1
  • Cinthia Melazzo de Andrade Mazzanti
    • 2
  • Sabina Passamonti
    • 3
  • Marília Valvassori Rodrigues
    • 1
  • Fabiano Barbosa Carvalho
    • 1
  • Michelle Melgarejo da Rosa
    • 1
  • Jessie Martins Gutierres
    • 1
  • Andréia Machado Cardoso
    • 1
  • Vera Maria Morsch
    • 1
  • Maria Rosa Chitolina Schetinger
    • 1
  1. 1.Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact SciencesFederal University of Santa MariaSanta MariaBrazil
  2. 2.Laboratory Clinical Veterinary (LACVet)Federal University of Santa MariaSanta MariaBrazil
  3. 3.Department of Life SciencesUniversity of TriesteTriesteItaly

Personalised recommendations