Molecular and Cellular Biochemistry

, Volume 387, Issue 1–2, pp 279–285 | Cite as

Impact of repeated intravenous bone marrow mesenchymal stem cells infusion on myocardial collagen network remodeling in a rat model of doxorubicin-induced dilated cardiomyopathy

  • Qin YuEmail author
  • Qianxiao Li
  • Rongmei Na
  • Xiaofei Li
  • Baiting Liu
  • Lili Meng
  • Hanyu Liutong
  • Weiyi Fang
  • Ning Zhu
  • Xiaoqun Zheng


Bone marrow mesenchymal stem cells (MSCs) transplantation improved cardiac function and reduced myocardial fibrosis in both ischemic and non-ischemic cardiomyopathies. We evaluated the effects of repeated peripheral vein injection of MSCs on collagen network remodeling and myocardial TGF-β1, AT1, CYP11B2 (aldosterone synthase) gene expressions in a rat model of doxorubicin (DOX)-induced dilated cardiomyopathy (DCM). Thirty-eight out of 53 SD rats survived at 10 weeks post-DOX injection (2.5 mg/kg/week for 6 weeks, i.p.) were divided into DCM blank (without treatment, n = 12), DCM placebo (intravenous tail injection of 0.5 mL serum-free culture medium every other day for ten times, n = 13), and DCM plus MSCs group (intravenous tail injection of 5 × 106 MSCs dissolved in 0.5 mL serum-free culture medium every other day for 10 times, n = 13). Ten untreated rats served as normal controls. At 20 weeks after DOX injection, echocardiography, myocardial collagen content, myocardial expressions of types I and III collagen, TGF-β1, AT1, and CYP11B2 were compared among groups. At 20 weeks post-DOX injection, 8 rats (67 %) survived in DCM blank group, 9 rats (69 %) survived in DCM placebo group while 13 rats (100 %) survived in DCM plus MSCs group. Left ventricular end-diastolic diameter was significantly higher and ejection fraction was significantly lower in DCM blank and DCM placebo groups compared to normal control rats, which were significantly improved in DCM plus MSCs group (all p < 0.05 vs. DCM blank and DCM placebo groups). Moreover, myocardial collagen volume fraction, types I and III collagen, myocardial mRNA expressions of TGF-β1, AT1, CYP11B2, and collagen I/III ratio were all significantly lower in DCM plus MSCs group compared to DCM blank and DCM placebo groups (all p < 0.05). Repeated intravenous MSCs transplantation could improve cardiac function by attenuating myocardial collagen network remodeling possibly through downregulating renin–angiotensin–aldosterone system in DOX-induced DCM rats.


Mesenchymal stem cells transplantation Dilated cardiomyopathy Collagen network remodeling Doxorubicin 



This study was supported by Scientific Research Fund from Dalian Science and Technology Bureau (Grant Number: 2007E21SF203) and the Specialized Research Fund of Higher Education of Liaoning Provincial Education Department (Grant Number: L2010023)




  1. 1.
    Tanaka N, Kanai K, Oda T (1973) On the pathological modification of serum high density lipoproteins in liver diseases. An alteration in the binding mode of indocyanine-green with human serum proteins. Clin Chim Acta 49:333–340PubMedCrossRefGoogle Scholar
  2. 2.
    Lipshultz SE, Colan SD, Gelber RD, Perez-Atayde AR, Sallan SE, Sanders SP (1991) Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med 324:808–815PubMedCrossRefGoogle Scholar
  3. 3.
    Chan KY, Xiang P, Zhou L, Li K, Ng PC, Wang CC, Zhang L, Deng HY, Pong NH, Zhao H, Chan WY, Sung RY (2011) Thrombopoietin protects against doxorubicin-induced cardiomyopathy, improves cardiac function, and reversely alters specific signalling networks. Eur J Heart Fail 13:366–376PubMedCrossRefGoogle Scholar
  4. 4.
    Choi EH, Lee N, Kim HJ, Kim MK, Chi SG, Kwon DY, Chun HS (2008) Schisandra fructus extract ameliorates doxorubicin-induce cytotoxicity in cardiomyocytes: altered gene expression for detoxification enzymes. Genes Nutr 2:337–345PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Frias MA, Lang U, Gerber-Wicht C, James RW (2010) Native and reconstituted HDL protect cardiomyocytes from doxorubicin-induced apoptosis. Cardiovasc Res 85:118–126PubMedCrossRefGoogle Scholar
  6. 6.
    Williams AR, Hare JM (2011) Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res 109:923–940PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Nagaya N, Fujii T, Iwase T, Ohgushi H, Itoh T, Uematsu M, Yamagishi M, Mori H, Kangawa K, Kitamura S (2004) Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol 287:2670–2676CrossRefGoogle Scholar
  8. 8.
    Ma J, Ge J, Zhang S, Sun A, Shen J, Chen L, Wang K, Zou Y (2005) Time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction. Basic Res Cardiol 100:217–223PubMedCrossRefGoogle Scholar
  9. 9.
    Yang S, Piao J, Jin L, Zhou Y (2013) Does pretreatment of bone marrow mesenchymal stem cells with 5-azacytidine or double intravenous infusion improve their therapeutic potential for dilated cardiomyopathy? Med Sci Monit Basic Res 19:20–31PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Nagaya N, Kangawa K, Itoh T, Iwase T, Murakami S, Miyahara Y, Fujii T, Uematsu M, Ohgushi H, Yamagishi M, Tokudome T, Mori H, Miyatake K, Kitamura S (2005) Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 112:1128–1135PubMedCrossRefGoogle Scholar
  11. 11.
    Weber KT, Brilla CG (1991) Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 83:1849–1865PubMedCrossRefGoogle Scholar
  12. 12.
    Mukai K, Imai M, Shimada H, Ishimura Y (1993) Isolation and characterization of rat CYP11B genes involved in late steps of mineralo- and glucocorticoid syntheses. J Biol Chem 268:9130–9137PubMedGoogle Scholar
  13. 13.
    Takai E, Akita H, Kanazawa K, Shiga N, Terashima M, Matsuda Y, Iwai C, Miyamoto Y, Kawai H, Takarada A, Yokoyama M (2002) Association between aldosterone synthase (CYP11B2) gene polymorphism and left ventricular volume in patients with dilated cardiomyopathy. Heart 88:649–650PubMedCrossRefGoogle Scholar
  14. 14.
    Stas S, Whaley-Connell A, Habibi J, Appesh L, Hayden MR, Karuparthi PR, Qazi M, Morris EM, Cooper SA, Link CD, Stump C, Hay M, Ferrario C, Sowers JR (2007) Mineralocorticoid receptor blockade attenuates chronic overexpression of the renin-angiotensin-aldosterone system stimulation of reduced nicotinamide adenine dinucleotide phosphate oxidase and cardiac remodeling. Endocrinology 148:3773–3780PubMedCrossRefGoogle Scholar
  15. 15.
    Yamashiro T, Kuge H, Zhang J, Honke K (2010) Calcineurin mediates the angiotensin II-induced aldosterone synthesis in the adrenal glands by up-regulation of transcription of the CYP11B2 gene. J Biochem 148:115–123PubMedCrossRefGoogle Scholar
  16. 16.
    Sahn DJ, DeMaria A, Kisslo J, Weyman A (1978) Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation 58:1072–1083PubMedCrossRefGoogle Scholar
  17. 17.
    Barauna VG, Rosa KT, Irigoyen MC, de Oliveira EM (2007) Effects of resistance training on ventricular function and hypertrophy in a rat model. Clin Med Res 5:114–120PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Li JH, Zhu HJ, Huang XR, Lai KN, Johnson RJ, Lan HY (2002) Smad7 inhibits fibrotic effect of TGF-Beta on renal tubular epithelial cells by blocking Smad2 activation. J Am Soc Nephrol 13:1464–1472PubMedCrossRefGoogle Scholar
  19. 19.
    Jie T, Shen X, Yu G-S, Bai Y-H, Zhu J, Liu G-X, Chen Y (2008) Effects of mesenchymal stem cell transplantation on cardiac function, structure, and electrophysiology in rabbits with dilated cardiomyopathy. Pediatrics 121:157–158CrossRefGoogle Scholar
  20. 20.
    Satoh M, Nakamura M, Saitoh H, Satoh H, Akatsu T, Iwasaka J, Masuda T, Hiramori K (2002) Aldosterone synthase (CYP11B2) expression and myocardial fibrosis in the failing human heart. Clin Sci Lond 102:381–386PubMedCrossRefGoogle Scholar
  21. 21.
    Mazo M, Arana M, Pelacho B, Prosper F (2012) Mesenchymal stem cells and cardiovascular disease: a bench to bedside roadmap. Stem Cells Int 2012:175979PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, Falk V, Filippatos G, Fonseca C, Gomez-Sanchez MA, Jaarsma T, Kober L, Lip GY, Maggioni AP, Parkhomenko A, Pieske BM, Popescu BA, Ronnevik PK, Rutten FH, Schwitter J, Seferovic P, Stepinska J, Trindade PT, Voors AA, Zannad F, Zeiher A (2012) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 33:1787–1847PubMedCrossRefGoogle Scholar
  23. 23.
    Keefe DL (2001) Anthracycline-induced cardiomyopathy. Semin Oncol 28:2–7PubMedGoogle Scholar
  24. 24.
    Shah K (2012) Mesenchymal stem cells engineered for cancer therapy. Adv Drug Deliv Rev 64:739–748PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Corsten MF, Shah K (2008) Therapeutic stem-cells for cancer treatment: hopes and hurdles in tactical warfare. Lancet Oncol 9:376–384PubMedCrossRefGoogle Scholar
  26. 26.
    Schulman IH, Hare JM (2012) Key developments in stem cell therapy in cardiology. Regen Med 7:17–24PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Linard C, Busson E, Holler V, Strup-Perrot C, Lacave-Lapalun JV, Lhomme B, Prat M, Devauchelle P, Sabourin JC, Simon JM, Bonneau M, Lataillade JJ, Benderitter M (2013) Repeated autologous bone marrow-derived mesenchymal stem cell injections improve radiation-induced proctitis in pigs. Stem Cells Transl Med 2(11):916–927PubMedCrossRefGoogle Scholar
  28. 28.
    Frolova EG, Sopko N, Blech L, Popovic ZB, Li J, Vasanji A, Drumm C, Krukovets I, Jain MK, Penn MS, Plow EF, Stenina OI (2012) Thrombospondin-4 regulates fibrosis and remodeling of the myocardium in response to pressure overload. FASEB J 26:2363–2373PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Qin Yu
    • 1
    Email author
  • Qianxiao Li
    • 1
    • 2
  • Rongmei Na
    • 1
  • Xiaofei Li
    • 1
    • 3
  • Baiting Liu
    • 1
  • Lili Meng
    • 1
  • Hanyu Liutong
    • 1
  • Weiyi Fang
    • 4
  • Ning Zhu
    • 5
  • Xiaoqun Zheng
    • 6
  1. 1.Department of CardiologyAffiliated Zhongshan Hospital of Dalian UniversityDalianChina
  2. 2.Department of CardiologyZhejiang Province Hospital of Integrated Traditional Chinese and Western MedicineHangzhouChina
  3. 3.Linqu County People’s Procuraforate of Shandong ProvinceWeifangChina
  4. 4.Department of CardiologyShanghai Chest HospitalShanghaiChina
  5. 5.Department of CardiologyThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
  6. 6.Department of CardiologyDalian Central HospitalDalianChina

Personalised recommendations