Molecular and Cellular Biochemistry

, Volume 386, Issue 1–2, pp 63–71 | Cite as

Metformin reverses multidrug resistance and epithelial–mesenchymal transition (EMT) via activating AMP-activated protein kinase (AMPK) in human breast cancer cells

  • Chen Qu
  • Weijia Zhang
  • Guopei Zheng
  • Zijuan Zhang
  • Jiang Yin
  • Zhimin HeEmail author


Breast cancer is the most frequently diagnosed tumor type and the primary leading cause of cancer deaths in women worldwide and multidrug resistance is the major obstacle for breast cancer treatment improvement. Emerging evidence suggests that metformin, the most widely used antidiabetic drug, resensitizes and cooperates with some anticancer drugs to exert anticancer effect. However, there are no data regarding the reversal effect of metformin on chemoresistance in breast cancer. In the present study, we investigated the resistance reversal effect of metformin on acquired multidrug-resistant breast cancer cells MCF-7/5-Fu derived from MCF-7 breast cancer cells and innate multidrug-resistant MDA-MB-231 breast cancer cells, and we found that metformin resensitized MCF7/5-FU and MDA-MB-231 to 5-fluorouracil (5-FU), adriamycin, and paclitaxel. We also observed that metformin reversed epithelial–mesenchymal transition (EMT) phenotype and decreased the invasive capacity of MCF7/5-FU and MDA-MB-231 cells. However, there were no significant changes upon metformin-treated MCF7 cells. Moreover, we found metformin treatment activated AMPK signal pathway in MCF7/5-FU and MDA-MB-231 cells and compound C, the AMPK inhibitor, could partly abolish the resensitization and EMT reversal effect of metformin. To the best of our knowledge, we are the first to report that metformin can resensitize multidrug-resistant breast cancer cells due to activating AMPK signal pathway. Our study will help elucidate the mechanism of chemoresistance and establish new strategies of chemotherapy for human breast cancer.


Breast cancer Multidrug resistance Metformin EMT 



This study was supported by Grants from the National Natural Science Foundation of China (81272450).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. doi: 10.3322/caac.20107 PubMedCrossRefGoogle Scholar
  2. 2.
    Hagmann W, Jesnowski R, Faissner R, Guo C, Lohr JM (2009) ATP-binding cassette C transporters in human pancreatic carcinoma cell lines. Upregulation in 5-fluorouracil-resistant cells. Pancreatology 9(1–2):136–144. doi: 10.1159/000178884 PubMedCrossRefGoogle Scholar
  3. 3.
    Zheng G, Peng F, Ding R, Yu Y, Ouyang Y, Chen Z, Xiao Z, He Z (2010) Identification of proteins responsible for the multiple drug resistance in 5-fluorouracil-induced breast cancer cell using proteomics analysis. J Cancer Res Clin Oncol 136(10):1477–1488. doi: 10.1007/s00432-010-0805-z PubMedCrossRefGoogle Scholar
  4. 4.
    Zheng G, Xiong Y, Yi S, Zhang W, Peng B, Zhang Q, He Z (2012) 14-3-3Sigma regulation by p53 mediates a chemotherapy response to 5-fluorouracil in MCF-7 breast cancer cells via Akt inactivation. FEBS Lett 586(2):163–168. doi: 10.1016/j.febslet.2011.11.034 PubMedCrossRefGoogle Scholar
  5. 5.
    Zhang W, Feng M, Zheng G, Chen Y, Wang X, Pen B, Yin J, Yu Y, He Z (2012) Chemoresistance to 5-fluorouracil induces epithelial–mesenchymal transition via up-regulation of Snail in MCF7 human breast cancer cells. Biochem Biophys Res Commun 417(2):679–685. doi: 10.1016/j.bbrc.2011.11.142 PubMedCrossRefGoogle Scholar
  6. 6.
    Berstein LM, Boyarkina MP, Teslenko SY (2012) Familial diabetes is associated with reduced risk of cancer in diabetic patients: a possible role for metformin. Med Oncol (Northwood, London, England) 29 (2):1308–1313. doi: 10.1007/s12032-011-9840-0
  7. 7.
    Kourelis TV, Siegel RD (2012) Metformin and cancer: new applications for an old drug. Med Oncol (Northwood, London, England) 29 (2):1314–1327. doi: 10.1007/s12032-011-9846-7
  8. 8.
    Bailey CJ, Turner RC (1996) Metformin. N Engl J Med 334(9):574–579. doi: 10.1056/nejm199602293340906 PubMedCrossRefGoogle Scholar
  9. 9.
    Tomic T, Botton T, Cerezo M, Robert G, Luciano F, Puissant A, Gounon P, Allegra M, Bertolotto C, Bereder JM, Tartare-Deckert S, Bahadoran P, Auberger P, Ballotti R, Rocchi S (2011) Metformin inhibits melanoma development through autophagy and apoptosis mechanisms. Cell Death Dis 2:e199. doi: 10.1038/cddis.2011.86 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Buzzai M, Jones RG, Amaravadi RK, Lum JJ, DeBerardinis RJ, Zhao F, Viollet B, Thompson CB (2007) Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res 67(14):6745–6752. doi: 10.1158/0008-5472.can-06-4447 PubMedCrossRefGoogle Scholar
  11. 11.
    Cufi S, Vazquez-Martin A, Oliveras-Ferraros C, Martin-Castillo B, Joven J, Menendez JA (2010) Metformin against TGFbeta-induced epithelial-to-mesenchymal transition (EMT): from cancer stem cells to aging-associated fibrosis. Cell Cycle (Georgetown, Tex) 9(22):4461–4468CrossRefGoogle Scholar
  12. 12.
    Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K (2009) Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 69(19):7507–7511. doi: 10.1158/0008-5472.can-09-2994 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Liu B, Fan Z, Edgerton SM, Deng XS, Alimova IN, Lind SE, Thor AD (2009) Metformin induces unique biological and molecular responses in triple negative breast cancer cells. Cell Cycle (Georgetown, Tex) 8(13):2031–2040CrossRefGoogle Scholar
  14. 14.
    Zhuang Y, Miskimins WK (2011) Metformin induces both caspase-dependent and poly(ADP-ribose) polymerase-dependent cell death in breast cancer cells. Mol Cancer Res 9(5):603–615. doi: 10.1158/1541-7786.mcr-10-0343 PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Iliopoulos D, Hirsch HA, Struhl K (2011) Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types. Cancer Res 71(9):3196–3201. doi: 10.1158/0008-5472.can-10-3471 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Rocha GZ, Dias MM, Ropelle ER, Osorio-Costa F, Rossato FA, Vercesi AE, Saad MJ, Carvalheira JB (2011) Metformin amplifies chemotherapy-induced AMPK activation and antitumoral growth. Clin Cancer Res 17(12):3993–4005. doi: 10.1158/1078-0432.ccr-10-2243 PubMedCrossRefGoogle Scholar
  17. 17.
    Shi WY, Xiao D, Wang L, Dong LH, Yan ZX, Shen ZX, Chen SJ, Chen Y, Zhao WL (2012) Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy. Cell Death Dis 3:e275. doi: 10.1038/cddis.2012.13 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Zhang Y, Wang Y, Bao C, Xu Y, Shen H, Chen J, Yan J, Chen Y (2012) Metformin interacts with AMPK through binding to gamma subunit. Mol Cell Biochem 368(1–2):69–76. doi: 10.1007/s11010-012-1344-5 PubMedCrossRefGoogle Scholar
  19. 19.
    Bhowmik A, Das N, Pal U, Mandal M, Bhattacharya S, Sarkar M, Jaisankar P, Maiti NC, Ghosh MK (2013) 2,2′-Diphenyl-3,3′-diindolylmethane: a potent compound induces apoptosis in breast cancer cells by inhibiting EGFR pathway. PLoS ONE 8(3):e59798. doi: 10.1371/journal.pone.0059798 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Yao J, Bi HE, Sheng Y, Cheng LB, Wendu RL, Wang CH, Cao GF, Jiang Q (2013) Ultraviolet (UV) and hydrogen peroxide activate ceramide-ER stress-AMPK signaling axis to promote retinal pigment epithelium (RPE) cell apoptosis. Int J Mol Sci 14(5):10355–10368. doi: 10.3390/ijms140510355 PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Esfahanian N, Shakiba Y, Nikbin B, Soraya H, Maleki-Dizaji N, Ghazi-Khansari M, Garjani A (2012) Effect of metformin on the proliferation, migration, and MMP-2 and -9 expression of human umbilical vein endothelial cells. Mol Med Rep 5(4):1068–1074. doi: 10.3892/mmr.2012.753 PubMedGoogle Scholar
  22. 22.
    Franciosi M, Lucisano G, Lapice E, Strippoli GF, Pellegrini F, Nicolucci A (2013) Metformin therapy and risk of cancer in patients with type 2 diabetes: systematic review. PLoS ONE 8(8):e71583. doi: 10.1371/journal.pone.0071583 PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Lega IC, Austin PC, Gruneir A, Goodwin PJ, Rochon PA, Lipscombe LL (2013) Association between metformin therapy and mortality after breast cancer: a population-based study. Diabetes Care 6(10):3018–3026. doi: 10.2337/dc12-2535 CrossRefGoogle Scholar
  24. 24.
    Zhu C, Li J, Cheng G, Zhou H, Tao L, Cai H, Li P, Cao Q, Ju X, Meng X, Wang M, Zhang Z, Qin C, Hua L, Yin C, Shao P (2013) miR-154 inhibits EMT by targeting HMGA2 in prostate cancer cells. Mol Cell Biochem 379(1–2):69–75. doi: 10.1007/s11010-013-1628-4 PubMedCrossRefGoogle Scholar
  25. 25.
    Li QQ, Xu JD, Wang WJ, Cao XX, Chen Q, Tang F, Chen ZQ, Liu XP, Xu ZD (2009) Twist1-mediated adriamycin-induced epithelial–mesenchymal transition relates to multidrug resistance and invasive potential in breast cancer cells. Clin Cancer Res 15(8):2657–2665. doi: 10.1158/1078-0432.ccr-08-2372 PubMedCrossRefGoogle Scholar
  26. 26.
    Raimondi C, Gianni W, Cortesi E, Gazzaniga P (2010) Cancer stem cells and epithelial–mesenchymal transition: revisiting minimal residual disease. Curr Cancer Drug Targets 10(5):496–508PubMedCrossRefGoogle Scholar
  27. 27.
    Singh A, Settleman J (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29(34):4741–4751. doi: 10.1038/onc.2010.215 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Tong WH, Sourbier C, Kovtunovych G, Jeong SY, Vira M, Ghosh M, Romero VV, Sougrat R, Vaulont S, Viollet B, Kim YS, Lee S, Trepel J, Srinivasan R, Bratslavsky G, Yang Y, Linehan WM, Rouault TA (2011) The glycolytic shift in fumarate-hydratase-deficient kidney cancer lowers AMPK levels, increases anabolic propensities and lowers cellular iron levels. Cancer Cell 20(3):315–327. doi: 10.1016/j.ccr.2011.07.018 PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Ramnanan CJ, McMullen DC, Groom AG, Storey KB (2010) The regulation of AMPK signaling in a natural state of profound metabolic rate depression. Mol Cell Biochem 335(1–2):91–105. doi: 10.1007/s11010-009-0246-7 PubMedCrossRefGoogle Scholar
  30. 30.
    Kim I, He YY (2013) Targeting the AMP-activated protein kinase for cancer prevention and therapy. Frontiers Oncol 3:175. doi: 10.3389/fonc.2013.00175 Google Scholar
  31. 31.
    Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, Cantley LC (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 101(10):3329–3335. doi: 10.1073/pnas.0308061100 PubMedCrossRefGoogle Scholar
  32. 32.
    Kaur M, Deep G, Jain AK, Raina K, Agarwal C, Wempe MF, Agarwal R (2013) Bitter melon juice activates cellular energy sensor AMP-activated protein kinase causing apoptotic death of human pancreatic carcinoma cells. Carcinogenesis 34(7):1585–1592. doi: 10.1093/carcin/bgt081 PubMedCrossRefGoogle Scholar
  33. 33.
    Huo HZ, Wang B, Qin J, Guo SY, Liu WY, Gu Y (2013) AMP-activated protein kinase (AMPK)/Ulk1-dependent autophagic pathway contributes to C6 ceramide-induced cytotoxic effects in cultured colorectal cancer HT-29 cells. Mol Cell Biochem 378(1–2):171–181. doi: 10.1007/s11010-013-1608-8 PubMedCrossRefGoogle Scholar
  34. 34.
    Lamouille S, Connolly E, Smyth JW, Akhurst RJ, Derynck R (2012) TGF-beta-induced activation of mTOR complex 2 drives epithelial–mesenchymal transition and cell invasion. J Cell Sci 125(Pt 5):1259–1273. doi: 10.1242/jcs.095299 PubMedCrossRefGoogle Scholar
  35. 35.
    Serova M, de Gramont A, Tijeras-Raballand A, Dos Santos C, Riveiro ME, Slimane K, Faivre S, Raymond E (2013) Benchmarking effects of mTOR, PI3K, and dual PI3K/mTOR inhibitors in hepatocellular and renal cell carcinoma models developing resistance to sunitinib and sorafenib. Cancer Chemother Pharmacol 71(5):1297–1307. doi: 10.1007/s00280-013-2129-6 PubMedCrossRefGoogle Scholar
  36. 36.
    Lee JH, Kim JH, Kim JS, Chang JW, Kim SB, Park JS, Lee SK (2013) AMP-activated protein kinase inhibits TGF-beta-, angiotensin II-, aldosterone-, high glucose-, and albumin-induced epithelial–mesenchymal transition. Am J Physiol Renal Physiol 304(6):F686–F697. doi: 10.1152/ajprenal.00148.2012 PubMedCrossRefGoogle Scholar
  37. 37.
    Burris HA 3rd (2013) Overcoming acquired resistance to anticancer therapy: focus on the PI3K/AKT/mTOR pathway. Cancer Chemother Pharmacol 71(4):829–842. doi: 10.1007/s00280-012-2043-3 PubMedCrossRefGoogle Scholar
  38. 38.
    Berk L, Mita MM, Kreisberg J, Bedrosian CL, Tolcher AW, Clackson T, Rivera VM (2012) Analysis of the pharmacodynamic activity of the mTOR inhibitor ridaforolimus (AP23573, MK-8669) in a phase 1 clinical trial. Cancer Chemother Pharmacol 69(5):1369–1377. doi: 10.1007/s00280-011-1813-7 PubMedCrossRefGoogle Scholar
  39. 39.
    Seki Y, Yamamoto N, Tamura Y, Goto Y, Shibata T, Tanioka M, Asahina H, Nokihara H, Yamada Y, Shimamoto T, Noguchi K, Tamura T (2012) Phase I study for ridaforolimus, an oral mTOR inhibitor, in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol 69(4):1099–1105. doi: 10.1007/s00280-011-1788-4 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Chen Qu
    • 1
    • 2
  • Weijia Zhang
    • 1
  • Guopei Zheng
    • 1
  • Zijuan Zhang
    • 1
  • Jiang Yin
    • 1
  • Zhimin He
    • 1
    Email author
  1. 1.Cancer Research Institute and Cancer HospitalGuangzhou Medical UniversityGuangzhouPeople’s Republic of China
  2. 2.Cancer Research Institute, Xiangya School of MedicineCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations