Molecular and Cellular Biochemistry

, Volume 385, Issue 1–2, pp 125–132 | Cite as

The AKT/mTOR pathway mediates neuronal protective effects of erythropoietin in sepsis

  • Guo-Bin Wang
  • Yun-Lan Ni
  • Xin-Ping Zhou
  • Wei-Fang ZhangEmail author


Sepsis is one of the most common causes of mortality in intensive care units. Although sepsis-associated encephalopathy (SAE) is reported to be a leading manifestation of sepsis, its pathogenesis remains to be elucidated. In this study, we investigated whether exogenous recombinant human erythropoietin (rhEPO) could protect brain from neuronal apoptosis in the model of SAE. We showed that application of rhEPO enhanced Bcl-2, decreased Bad in lipopolysaccharide treated neuronal cultures, and improved neuronal apoptosis in hippocampus of cecal ligation and peroration rats. We also found that rhEPO increased the expression of phosphorylated AKT, and the antiapoptotic role of rhEPO could be abolished by phosphoinositide 3-kinase (PI3K)/AKT inhibitor LY294002 or SH-5. In addition, systemic sepsis inhibited the hippocampal-phosphorylated mammalian target of rapamycin (mTOR) and p70S6K (downstream substrates of PKB/AKT signaling), which were restored by administration of exogenous rhEPO. Moreover, treatment with mTOR-signaling inhibitor rapamycin or transfection of mTOR siRNA reversed the neuronal protective effects of rhEPO. Finally, exogenous rhEPO rescued the emotional and spatial cognitive defects without any influence on locomotive activity. These results illustrated that exogenous rhEPO improves brain dysfunction by reducing neuronal apoptosis, and AKT/mTOR signaling is likely to be involved in this process. Application of rhEPO may serve as a potential therapy for the treatment of SAE.


Sepsis Apoptosis rhEPO AKT/mTOR signaling Cognitive dysfunction Hippocampus 



Cecal ligation and peroration




Mammalian target of rapamycin


Morris water maze


Recombinant human erythropoietin


Sepsis-associated encephalopathy


Terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling


Conflict of interest

The authors have no financial conflicts of interest.


  1. 1.
    Iacobone E, Bailly-Salin J, Polito A, Friedman D, Stevens RD, Sharshar T (2009) Sepsis-associated encephalopathy and its differential diagnosis. Crit Care Med 37:S331–S336CrossRefPubMedGoogle Scholar
  2. 2.
    Siami S, Annane D, Sharshar T (2008) The encephalopathy in sepsis. Crit Care Clin 24:67–82CrossRefPubMedGoogle Scholar
  3. 3.
    Comim CM, Rezin GT, Scaini G, Di-Pietro PB, Cardoso MR, Petronilho FC, Ritter C, Streck EL, Quevedo J, Dal-Pizzol F (2008) Mitochondrial respiratory chain and creatine kinase activities in rat brain after sepsis induced by cecal ligation and perforation. Mitochondrion 8:313–318CrossRefPubMedGoogle Scholar
  4. 4.
    Joana da Costa P, Santiago APS, Amâncio RT, Galina A, Oliveira MF, Bozza FA (2008) Sepsis induces brain mitochondrial dysfunction. Crit Care Med 36:1925–1932CrossRefGoogle Scholar
  5. 5.
    Weberpals M, Hermes M, Hermann S, Kummer MP, Terwel D, Semmler A, Berger M, Schäfers M, Heneka MT (2009) NOS2 gene deficiency protects from sepsis-induced long-term cognitive deficits. J Neurosci 29:14177–14184CrossRefPubMedGoogle Scholar
  6. 6.
    Morishita E, Masuda S, Nagao M, Yasuda Y, Sasaki R (1997) Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience 76:105–116CrossRefPubMedGoogle Scholar
  7. 7.
    Morishita E, Narita H, Nishida M, Kawashima N, Yamagishi K, Masuda S, Nagao M, Hatta H, Sasaki R (1996) Anti-erythropoietin receptor monoclonal antibody: epitope mapping, quantification of the soluble receptor, and detection of the solubilized transmembrane receptor and the receptor-expressing cells. Blood 88:465–471PubMedGoogle Scholar
  8. 8.
    Digicaylioglu M, Bichet S, Marti H, Wenger R, Rivas L, Bauer C, Gassmann M (1995) Localization of specific erythropoietin binding sites in defined areas of the mouse brain. Proc Natl Acad Sci USA 92:3717–3720PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    McPherson RJ, Juul SE (2008) Recent trends in erythropoietin-mediated neuroprotection. Int J Dev Neurosci 26:103–111PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Kao R, Xenocostas A, Rui T, Yu P, Huang W, Rose J, Martin CM (2007) Erythropoietin improves skeletal muscle microcirculation and tissue bioenergetics in a mouse sepsis model. Crit Care 11:R58PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Koroglu T, Yilmaz O, Ozer E, Baskin H, Gokmen N, Kumral A, Duman M, Ozkan H (2006) Erythropoietin attenuates lipopolysaccharide-induced splenic and thymic apoptosis in rats. Physiol Res 55:309PubMedGoogle Scholar
  12. 12.
    Kumral A, Baskin H, Yesilirmak DC, Ergur BU, Aykan S, Genc S, Genc K, Yilmaz O, Tugyan K, Giray O (2007) Erythropoietin attenuates lipopolysaccharide-induced white matter injury in the neonatal rat brain. Neonatology 92:269–278CrossRefPubMedGoogle Scholar
  13. 13.
    Mitra A, Bansal S, Wang W, Falk S, Zolty E, Schrier RW (2007) Erythropoietin ameliorates renal dysfunction during endotoxaemia. Nephrol Dial Transplant 22:2349–2353CrossRefPubMedGoogle Scholar
  14. 14.
    Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Bao H, Jacobs-Helber S, Lawson A, Penta K, Wickrema A, Sawyer S (1999) Protein kinase B (c-Akt), phosphatidylinositol 3-kinase, and STAT5 are activated by erythropoietin (EPO) in HCD57 erythroid cells but are constitutively active in an EPO-independent, apoptosis-resistant subclone (HCD57-SREI cells). Blood 93:3757–3773PubMedGoogle Scholar
  17. 17.
    Tramontano A, Muniyappa R, Black A, Blendea M, Cohen I, Deng L, Sowers J, Cutaia M, El-Sherif N (2003) Erythropoietin protects cardiac myocytes from hypoxia-induced apoptosis through an Akt-dependent pathway. Biochem Biophys Res Commun 308:990–994CrossRefPubMedGoogle Scholar
  18. 18.
    Kaech S, Banker G (2007) Culturing hippocampal neurons. Nat Protoc 1:2406–2415CrossRefGoogle Scholar
  19. 19.
    Ritter C, Andrades ME, Reinke A, Menna-Barreto S, Moreira JCF, Dal-Pizzol F (2004) Treatment with N-acetylcysteine plus deferoxamine protects rats against oxidative stress and improves survival in sepsis. Crit Care Med 32:342–349CrossRefPubMedGoogle Scholar
  20. 20.
    Sakanaka M, Wen T-C, Matsuda S, Masuda S, Morishita E, Nagao M, Sasaki R (1998) In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci USA 95:4635–4640PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Valentim AM, Di Giminiani P, Ribeiro PO, Rodrigues P, Olsson IAS, Antunes LM (2010) Lower isoflurane concentration affects spatial learning and neurodegeneration in adult mice compared with higher concentrations. Anesthesiology 113:1099–1108CrossRefPubMedGoogle Scholar
  22. 22.
    Ebersoldt M, Sharshar T, Annane D (2007) Sepsis-associated delirium. Intensive Care Med 33:941–950CrossRefGoogle Scholar
  23. 23.
    Maiese K, Li F, Chong ZZ (2004) Erythropoietin in the brain: can the promise to protect be fulfilled? Trends Pharmacol Sci 25:577CrossRefPubMedGoogle Scholar
  24. 24.
    Calapai G, Marciano MC, Corica F, Allegra A, Parisi A, Frisina N, Caputi AP, Buemi M (2000) Erythropoietin protects against brain ischemic injury by inhibition of nitric oxide formation. Eur J Pharmacol 401:349–356CrossRefPubMedGoogle Scholar
  25. 25.
    Kanaan NM, Collier TJ, Marchionini DM, McGuire SO, Fleming MF, Sortwell CE (2006) Exogenous erythropoietin provides neuroprotection of grafted dopamine neurons in a rodent model of Parkinson’s disease. Brain Res 1068:221–229CrossRefGoogle Scholar
  26. 26.
    Assaraf MI, Diaz Z, Liberman A, Miller WH Jr, Arvanitakis Z, Li Y, Bennett DA, Schipper HM (2007) Brain erythropoietin receptor expression in Alzheimer disease and mild cognitive impairment. J Neuropathol Exp Neurol 66:389–398CrossRefPubMedGoogle Scholar
  27. 27.
    Aoshiba K, Onizawa S, Tsuji T, Nagai A (2009) Therapeutic effects of erythropoietin in murine models of endotoxin shock. Crit Care Med 37:889–898CrossRefPubMedGoogle Scholar
  28. 28.
    Haiden N, Klebermass K, Cardona F, Schwindt J, Berger A, Kohlhauser-Vollmuth C, Jilma B, Pollak A (2006) A randomized, controlled trial of the effects of adding vitamin B12 and folate to erythropoietin for the treatment of anemia of prematurity. Pediatrics 118:180–188CrossRefPubMedGoogle Scholar
  29. 29.
    Ehrenreich H, Hasselblatt M, Dembowski C, Cepek L, Lewczuk P, Stiefel M, Rustenbeck H, Breiter N, Jacob S, Knerlich F (2002) Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med 8:495–505PubMedCentralPubMedGoogle Scholar
  30. 30.
    Aher S, Ohlsson A (2006) Late erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants. Cochrane Database Syst Rev 3:CD004868PubMedGoogle Scholar
  31. 31.
    Yap TA, Garrett MD, Walton MI, Raynaud F, de Bono JS, Workman P (2008) Targeting the PI3K–AKT–mTOR pathway: progress, pitfalls, and promises. Curr Opin Pharmacol 8:393–412CrossRefPubMedGoogle Scholar
  32. 32.
    Parcellier A, Tintignac LA, Zhuravleva E, Hemmings BA (2008) PKB and the mitochondria: AKTing on apoptosis. Cell Signal 20:21–30CrossRefPubMedGoogle Scholar
  33. 33.
    Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C (2003) PI3K/Akt and apoptosis: size matters. Oncogene 22:8983–8998CrossRefPubMedGoogle Scholar
  34. 34.
    Rokutanda S, Fujita T, Kanatani N, Yoshida CA, Komori H, Liu W, Mizuno A, Komori T (2009) Akt regulates skeletal development through GSK3, mTOR, and FoxOs. Dev Biol 328:78–93CrossRefPubMedGoogle Scholar
  35. 35.
    Cai W, Rudolph JL, Harrison SM, Jin L, Frantz AL, Harrison DA, Andres DA (2011) An evolutionarily conserved Rit GTPase–p38 MAPK signaling pathway mediates oxidative stress resistance. Mol Biol Cell 22:3231–3241PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Koh P-O (2011) Nicotinamide attenuates the ischemic brain injury-induced decrease of Akt activation and Bad phosphorylation. Neurosci Lett 498:105–109CrossRefPubMedGoogle Scholar
  37. 37.
    Maiese K, Chong ZZ, Li F, Shang YC (2008) Erythropoietin: elucidating new cellular targets that broaden therapeutic strategies. Prog Neurobiol 85:194–213PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Mendoza MC, Er EE, Blenis J (2011) The Ras-ERK and PI3 K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 36:320–328PubMedCentralCrossRefGoogle Scholar
  39. 39.
    Lei G, Xia Y, Johnson KM (2007) The role of Akt-GSK-3β signaling and synaptic strength in phencyclidine-induced neurodegeneration. Neuropsychopharmacol 33:1343–1353CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Guo-Bin Wang
    • 1
  • Yun-Lan Ni
    • 1
  • Xin-Ping Zhou
    • 1
  • Wei-Fang Zhang
    • 1
    Email author
  1. 1.Department of Surgical Intensive Care UnitThe First Affiliated Hospital, Medical College, Zhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations