Molecular and Cellular Biochemistry

, Volume 384, Issue 1–2, pp 213–219 | Cite as

MicroRNA-124 reduces caveolar density by targeting caveolin-1 in porcine kidney epithelial PK15 cells

  • Songbai Yang
  • Xiangdong Liu
  • Xinyun Li
  • Shufeng Sun
  • Fei Sun
  • Bin FanEmail author
  • Shuhong ZhaoEmail author


Caveolin-1 is the principal component of caveolae, and it is implicated in endocytosis, cholesterol homeostasis, signal transduction and tumorigenesis. MicroRNAs play key regulatory roles in many cellular processes. However, the molecular mechanism by which porcine caveolin-1 is regulated by microRNAs remains unclear. In the present study, we found that miR-124 could directly target caveolin-1 in porcine kidney epithelial cells (PK15). A luciferase reporter assay revealed that miR-124 directly bound to Cav1 mRNA. Ectopic expression of miR-124 decreased porcine Cav1 expression at both the mRNA and protein levels. Furthermore, we used transmission electron microscopy to count caveolae in the cytosolic space next to the membrane and we found that the overexpression of miR-124 in PK15 cells reduced the density of the caveolae. Our results suggested that miR-124 reduced caveolar density by targeting caveolin-1 in PK15 cells; therefore, miR-124 could play an important role in the caveolae-mediated endocytosis of pathogens and signal transduction.


miR-124 Caveolin-1 Caveolar density PK15 cells 



This work was supported by the NSFC (31025026, 31101693, 31072009) and the Fundamental Research Funds for the Central Universities (2010PY008).


  1. 1.
    Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455:1124–1128PubMedCrossRefGoogle Scholar
  2. 2.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  3. 3.
    Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866PubMedCrossRefGoogle Scholar
  4. 4.
    Baroukh N, Ravier MA, Loder MK, Hill EV, Bounacer A, Scharfmann R, Rutter GA, Van Obberghen E (2007) MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J Biol Chem 282:19575–19588PubMedCrossRefGoogle Scholar
  5. 5.
    Chen K, Rajewsky N (2007) The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 8:93–103PubMedCrossRefGoogle Scholar
  6. 6.
    Pillai RS, Bhattacharyya SN, Filipowicz W (2007) Repression of protein synthesis by miRNAs: How many mechanisms? Trends Cell Biol 17:118–126PubMedCrossRefGoogle Scholar
  7. 7.
    Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114PubMedCrossRefGoogle Scholar
  8. 8.
    Okamoto T, Schlegel A, Scherer PE, Lisanti MP (1998) Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem 273:5419–5422PubMedCrossRefGoogle Scholar
  9. 9.
    Parton RG, Simons K (2007) The multiple faces of caveolae. Nat Rev Mol Cell Biol 8:185–194PubMedCrossRefGoogle Scholar
  10. 10.
    Gargalovic P, Dory L (2003) Caveolins and macrophage lipid metabolism. J Lipid Res 44:11–21PubMedCrossRefGoogle Scholar
  11. 11.
    Scherer PE, Lewis RY, Volonte D, Engelman JA, Galbiati F, Couet J, Kohtz DS, van Donselaar E, Peters P, Lisanti MP (1997) Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J Biol Chem 272:29337–29346PubMedCrossRefGoogle Scholar
  12. 12.
    Tang Z, Scherer PE, Okamoto T, Song K, Chu C, Kohtz DS, Nishimoto I, Lodish HF, Lisanti MP (1996) Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem 271:2255–2261PubMedCrossRefGoogle Scholar
  13. 13.
    Lin MI, Yu J, Murata T, Sessa WC (2007) Caveolin-1-deficient mice have increased tumor microvascular permeability, angiogenesis, and growth. Cancer Res 67:2849–2856PubMedCrossRefGoogle Scholar
  14. 14.
    Gonzalez-Munoz E, Lopez-Iglesias C, Calvo M, Palacin M, Zorzano A, Camps M (2009) Caveolin-1 loss of function accelerates glucose transporter 4 and insulin receptor degradation in 3T3-L1 adipocytes. Endocrinology 150:3493–3502PubMedCrossRefGoogle Scholar
  15. 15.
    Frank PG, Pavlides S, Cheung MW, Daumer K, Lisanti MP (2008) Role of caveolin-1 in the regulation of lipoprotein metabolism. Am J Physiol Cell Physiol 295:C242–C248PubMedCrossRefGoogle Scholar
  16. 16.
    Liu XD, Chen HB, Tong Q, Li XY, Zhu MJ, Wu ZF, Zhou R, Zhao SH (2011) Molecular characterization of caveolin-1 in pigs infected with Haemophilus parasuis. J Immunol 186:3031–3046PubMedCrossRefGoogle Scholar
  17. 17.
    Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M, Heim MH, Stoffel M (2011) MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474:649–653PubMedCrossRefGoogle Scholar
  18. 18.
    Lin DH, Yue P, Pan C, Sun P, Wang WH (2011) MicroRNA 802 stimulates ROMK channels by suppressing caveolin-1. J Am Soc Nephrol 22:1087–1098PubMedCrossRefGoogle Scholar
  19. 19.
    Orom UA, Lim MK, Savage JE, Jin L, Saleh AD, Lisanti MP, Simone NL (2012) MicroRNA-203 regulates caveolin-1 in breast tissue during caloric restriction. Cell Cycle 11:1291–1295PubMedCrossRefGoogle Scholar
  20. 20.
    Nohata N, Hanazawa T, Kikkawa N, Mutallip M, Fujimura L, Yoshino H, Kawakami K, Chiyomaru T, Enokida H, Nakagawa M, Okamoto Y, Seki N (2011) Caveolin-1 mediates tumor cell migration and invasion and its regulation by miR-133a in head and neck squamous cell carcinoma. Int J Oncol 38:209–217PubMedGoogle Scholar
  21. 21.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  22. 22.
    Shu-feng S, Kai Z, Wei X, Gang W, Jian-Jun C, Fei S (2009) 3D Structural investigation of caveolae of PAE cell by electron tomography. Prog Biochem Biophys 36:729–735Google Scholar
  23. 23.
    Hill MM, Bastiani M, Luetterforst R, Kirkham M, Kirkham A, Nixon SJ, Walser P, Abankwa D, Oorschot VM, Martin S, Hancock JF, Parton RG (2008) PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 132:113–124PubMedCrossRefGoogle Scholar
  24. 24.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20PubMedCrossRefGoogle Scholar
  25. 25.
    Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773PubMedCrossRefGoogle Scholar
  26. 26.
    Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific MicroRNAs from mouse. Curr Biol 12:735–739PubMedCrossRefGoogle Scholar
  27. 27.
    Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27:435–448PubMedCrossRefGoogle Scholar
  28. 28.
    Liang YJ, Wang QY, Zhou CX, Yin QQ, He M, Yu XT, Cao DX, Chen GQ, He JR, Zhao Q (2013) MiR-124 targets slug to regulate epithelial-mesenchymal transition and metastasis of breast cancer. Carcinogenesis 34:713–722PubMedCrossRefGoogle Scholar
  29. 29.
    Budhu A, Jia HL, Forgues M, Liu CG, Goldstein D, Lam A, Zanetti KA, Ye QH, Qin LX, Croce CM, Tang ZY, Wang XW (2008) Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology 47:897–907PubMedCrossRefGoogle Scholar
  30. 30.
    Zheng F, Liao YJ, Cai MY, Liu YH, Liu TH, Chen SP, Bian XW, Guan XY, Lin MC, Zeng YX, Kung HF, Xie D (2011) The putative tumour suppressor microRNA-124 modulates hepatocellular carcinoma cell aggressiveness by repressing ROCK2 and EZH2. Gut 61:278–289PubMedCrossRefGoogle Scholar
  31. 31.
    Tse EY, Ko FC, Tung EK, Chan LK, Lee TK, Ngan ES, Man K, Wong AS, Ng IO, Yam JW (2012) Caveolin-1 overexpression is associated with hepatocellular carcinoma tumourigenesis and metastasis. J Pathol 226:645–653PubMedCrossRefGoogle Scholar
  32. 32.
    Pelkmans L, Kartenbeck J, Helenius A (2001) Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3:473–483PubMedCrossRefGoogle Scholar
  33. 33.
    Beer C, Andersen DS, Rojek A, Pedersen L (2005) Caveola-dependent endocytic entry of amphotropic murine leukemia virus. J Virol 79:10776–10787PubMedCrossRefGoogle Scholar
  34. 34.
    Guo CJ, Liu D, Wu YY, Yang XB, Yang LS, Mi S, Huang YX, Luo YW, Jia KT, Liu ZY, Chen WJ, Weng SP, Yu XQ, He JG (2011) Entry of tiger frog virus (an Iridovirus) into HepG2 cells via a pH-dependent, atypical, caveola-mediated endocytosis pathway. J Virol 85:6416–6426PubMedCrossRefGoogle Scholar
  35. 35.
    Zhu YZ, Xu QQ, Wu DG, Ren H, Zhao P, Lao WG, Wang Y, Tao QY, Qian XJ, Wei YH, Cao MM, Qi ZT (2012) Japanese encephalitis virus enters rat neuroblastoma cells via a pH-dependent, dynamin and caveola-mediated endocytosis pathway. J Virol 86:13407–13422PubMedCrossRefGoogle Scholar
  36. 36.
    Couet J, Sargiacomo M, Lisanti MP (1997) Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J Biol Chem 272:30429–30438PubMedCrossRefGoogle Scholar
  37. 37.
    Foti M, Porcheron G, Fournier M, Maeder C, Carpentier JL (2007) The neck of caveolae is a distinct plasma membrane subdomain that concentrates insulin receptors in 3T3-L1 adipocytes. Proc Natl Acad Sci USA 104:1242–1247PubMedCrossRefGoogle Scholar
  38. 38.
    Ju H, Zou R, Venema VJ, Venema RC (1997) Direct interaction of endothelial nitric-oxide synthase and caveolin-1 inhibits synthase activity. J Biol Chem 272:18522–18525PubMedCrossRefGoogle Scholar
  39. 39.
    Li S, Okamoto T, Chun M, Sargiacomo M, Casanova JE, Hansen SH, Nishimoto I, Lisanti MP (1995) Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J Biol Chem 270:15693–15701PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and TechnologyHuazhong Agricultural UniversityWuhanChina
  2. 2.Center for Bio-imaging, Institute of BiophysicsChinese Academy of SciencesBeijingChina
  3. 3.National Laboratory of Biomacromolecules, Institute of BiophysicsChinese Academy of SciencesBeijingChina

Personalised recommendations